Cyclic Voltammetry of Screen-Printed Carbon Electrode Coated with Ag-ZnO Nanoparticles in Chitosan Matrix

In this paper, the authors describe the fabrication of nanocomposite chitosan-based systems of zinc oxide (ZnO), silver (Ag) and Ag-ZnO. Recently, the development of coated screen-printed electrodes using metal and metal oxide nanoparticles (NPs) for the specific detection and monitoring of differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-04, Vol.16 (8), p.3266
Hauptverfasser: Herbei, Elena Emanuela, Alexandru, Petrică, Busila, Mariana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the authors describe the fabrication of nanocomposite chitosan-based systems of zinc oxide (ZnO), silver (Ag) and Ag-ZnO. Recently, the development of coated screen-printed electrodes using metal and metal oxide nanoparticles (NPs) for the specific detection and monitoring of different cancer tumors has been obtaining important results. Ag, ZnO NPs and Ag-ZnO prepared by the hydrolysis of zinc acetate blended with a chitosan (CS) matrix were used for the surface modification of screen-printed carbon electrodes (SPCEs) in order to analyze the electrochemical behavior of the typical redox system of a 10 mM potassium ferrocyanide-0.1 M buffer solution (BS). The solutions of CS, ZnO/CS, Ag/CS and Ag-ZnO/CS were prepared in order to modify the carbon electrode surface, and were measured at different scan rates from 0.02 V/s to 0.7 V/s by cyclic voltammetry. The cyclic voltammetry (CV) was performed on a house-built potentiostat (HBP). The cyclic voltammetry of the measured electrodes showed the influence of varying the scan rate. The variation of the scan rate has an influence on the intensity of the anodic and cathodic peak. Both values of currents (anodic and cathodic currents) have higher values for 0.1 V/s (Ia = 22 μA and Ic = -25 μA) compared to the values for 0.06 V/s (Ia = 10 μA and Ic = -14 μA). The CS, ZnO/CS, Ag/CS and Ag-ZnO/CS solutions were characterized using a field emission scanning electron microscopy (FE-SEM) with EDX elemental analysis. The modified coated surfaces of screen-printed electrodes were analyzed using optical microscopy (OM). The present coated carbon electrodes showed a different waveform compared to the voltage applied to the working electrode, depending on the scan rate and chemical composition of the modified electrodes.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16083266