Lovastatin, an Up-Regulator of Low-Density Lipoprotein Receptor, Enhances Follicular Development in Mouse Ovaries
Ovarian aging hampers in vitro fertilization in assisted reproductive medicine and has no cure. Lipoprotein metabolism is associated with ovarian aging. It remains unclear how to overcome poor follicular development with aging. Upregulation of the low-density lipoprotein receptor (LDLR) enhances oog...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-04, Vol.24 (8), p.7263 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ovarian aging hampers in vitro fertilization in assisted reproductive medicine and has no cure. Lipoprotein metabolism is associated with ovarian aging. It remains unclear how to overcome poor follicular development with aging. Upregulation of the low-density lipoprotein receptor (LDLR) enhances oogenesis and follicular development in mouse ovaries. This study investigated whether upregulation of LDLR expression using lovastatin enhances ovarian activity in mice. We performed superovulation using a hormone and used lovastatin to upregulate LDLR. We histologically analyzed the functional activity of lovastatin-treated ovaries and investigated gene and protein expression of follicular development markers, using RT-qPCR and Western blotting. Histological analysis showed that lovastatin significantly increased the numbers of antral follicles and ovulated oocytes per ovary. The in vitro maturation rate was 10% higher for lovastatin-treated ovaries than for control ovaries. Relative LDLR expression was 40% higher in lovastatin-treated ovaries than in control ovaries. Lovastatin significantly increased steroidogenesis in ovaries and promoted the expression of follicular development marker genes such as anti-Mullerian hormone, Oct3/4, Nanog, and Sox2. In conclusion, lovastatin enhanced ovarian activity throughout follicular development. Therefore, we suggest that upregulation of LDLR may help to improve follicular development in clinical settings. Modulation of lipoprotein metabolism can be used with assisted reproductive technologies to overcome ovarian aging. |
---|---|
ISSN: | 1422-0067 1422-0067 |
DOI: | 10.3390/ijms24087263 |