Identification of GPI-anchored protein LYPD1 as an essential factor for odontoblast differentiation in tooth development

Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2023-05, Vol.299 (5), p.104638-104638, Article 104638
Hauptverfasser: Fu, Yao, Miyazaki, Kanako, Chiba, Yuta, Funada, Keita, Yuta, Tomomi, Tian, Tian, Mizuta, Kanji, Kawahara, Jumpei, Zhang, Ling, Martin, Daniel, Iwamoto, Tsutomu, Takahashi, Ichiro, Fukumoto, Satoshi, Yoshizaki, Keigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have been published on the specific effects of lipid rafts on tooth development. Using microarray and single-cell RNA sequencing methods, we found that a GPI-AP, lymphocyte antigen-6/Plaur domain-containing 1 (Lypd1), was specifically expressed in preodontoblasts. Depletion of Lypd1 in tooth germ using an ex vivo organ culture system and in mouse dental pulp (mDP) cells resulted in the inhibition of odontoblast differentiation. Activation of bone morphogenetic protein (BMP) signaling by BMP2 treatment in mDP cells promoted odontoblast differentiation via phosphorylation of Smad1/5/8, while this BMP2-mediated odontoblast differentiation was inhibited by depletion of Lypd1. Furthermore, we created a deletion construct of the C terminus containing the omega site in LYPD1; this site is necessary for localizing GPI-APs to the plasma membrane and lipid rafts. We identified that this site is essential for odontoblast differentiation and morphological change of mDP cells. These findings demonstrated that LYPD1 is a novel marker of preodontoblasts in the developing tooth; in addition, they suggest that LYPD1 is important for tooth development and that it plays a pivotal role in odontoblast differentiation by regulating Smad1/5/8 phosphorylation through its effect as a GPI-AP in lipid rafts.
ISSN:0021-9258
1083-351X
DOI:10.1016/j.jbc.2023.104638