Characteristic polynomials, spectral-based Riemann-Zeta functions and entropy indices of n-dimensional hypercubes
We obtain the characteristic polynomials and a number of spectral-based indices such as the Riemann-Zeta functional indices and spectral entropies of n-dimensional hypercubes using recursive Hadamard transforms. The computed numerical results are constructed for up to 23-dimensional hypercubes. Whil...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2023-08, Vol.61 (7), p.1570-1591 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain the characteristic polynomials and a number of spectral-based indices such as the Riemann-Zeta functional indices and spectral entropies of n-dimensional hypercubes using recursive Hadamard transforms. The computed numerical results are constructed for up to 23-dimensional hypercubes. While the graph energies exhibit a J-curve as a function of the dimension of the n-cubes, the spectra-based entropies exhibit a linear dependence on the dimension. We have also provided structural interpretations for the coefficients of the characteristic polynomials of n-cubes and obtain expressions for the integer sequences formed by the spectral-based Riemann-Zeta functions.
Graphical abstract |
---|---|
ISSN: | 0259-9791 1572-8897 |
DOI: | 10.1007/s10910-023-01479-3 |