Characteristic polynomials, spectral-based Riemann-Zeta functions and entropy indices of n-dimensional hypercubes

We obtain the characteristic polynomials and a number of spectral-based indices such as the Riemann-Zeta functional indices and spectral entropies of n-dimensional hypercubes using recursive Hadamard transforms. The computed numerical results are constructed for up to 23-dimensional hypercubes. Whil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2023-08, Vol.61 (7), p.1570-1591
1. Verfasser: Balasubramanian, Krishnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain the characteristic polynomials and a number of spectral-based indices such as the Riemann-Zeta functional indices and spectral entropies of n-dimensional hypercubes using recursive Hadamard transforms. The computed numerical results are constructed for up to 23-dimensional hypercubes. While the graph energies exhibit a J-curve as a function of the dimension of the n-cubes, the spectra-based entropies exhibit a linear dependence on the dimension. We have also provided structural interpretations for the coefficients of the characteristic polynomials of n-cubes and obtain expressions for the integer sequences formed by the spectral-based Riemann-Zeta functions. Graphical abstract
ISSN:0259-9791
1572-8897
DOI:10.1007/s10910-023-01479-3