Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model
COVID-19, caused by SARS-CoV-2 infection, is currently among the most important public health concerns worldwide. Although several effective vaccines have been developed, there is an urgent clinical need for effective pharmaceutical treatments for treatment of COVID-19. Ivermectin, a chemical deriva...
Gespeichert in:
Veröffentlicht in: | Journal of antibiotics 2023-08, Vol.76 (8), p.481-488 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | COVID-19, caused by SARS-CoV-2 infection, is currently among the most important public health concerns worldwide. Although several effective vaccines have been developed, there is an urgent clinical need for effective pharmaceutical treatments for treatment of COVID-19. Ivermectin, a chemical derivative of avermectin produced by
Streptomyces avermitilis
, is a macrocyclic lactone with antiparasitic activity. Recent studies have shown that ivermectin inhibits SARS-CoV-2 replication in vitro. In the present study, we investigated the in vivo effects of ivermectin in a hamster model of SARS-CoV-2 infection. The results of the present study demonstrate oral administration of ivermectin prior to SARS-CoV-2 infection in hamsters was associated with decreased weight loss and pulmonary inflammation. In addition, the administration of ivermectin reduced pulmonary viral titers and mRNA expression level of pro-inflammatory cytokines associated with severe COVID-19 disease. The administration of ivermectin rapidly induced the production of virus-specific neutralizing antibodies in the late stage of viral infection. Zinc concentrations leading to immune quiescence were also significantly higher in the lungs of ivermectin-treated hamsters compared to controls. These results indicate that ivermectin may have efficacy in reducing the development and severity of COVID-19 by affecting host immunity in a hamster model of SARS-CoV-2 infection. |
---|---|
ISSN: | 0021-8820 1881-1469 |
DOI: | 10.1038/s41429-023-00623-0 |