A generic scenario analysis of end-of-life plastic management: Chemical additives

Plastic growing demand and the increment in global plastics production have raised the number of spent plastics, out of which over 90% are either landfilled or incinerated. Both methods for handling spent plastics are susceptible to releasing toxic substances, damaging air, water, soil, organisms, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2023-01, Vol.441 (C), p.129902, Article 129902
Hauptverfasser: Chea, John D., Yenkie, Kirti M., Stanzione, Joseph F., Ruiz-Mercado, Gerardo J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plastic growing demand and the increment in global plastics production have raised the number of spent plastics, out of which over 90% are either landfilled or incinerated. Both methods for handling spent plastics are susceptible to releasing toxic substances, damaging air, water, soil, organisms, and public health. Improvements to the existing infrastructure for plastics management are needed to limit chemical additive release and exposure resulting from the end-of-life (EoL) stage. This article analyzes the current plastic waste management infrastructure and identifies chemical additive releases through a material flow analysis. Additionally, we performed a facility-level generic scenario analysis of the current U.S. EoL stage of plastic additives to track and estimate their potential migration, releases, and occupational exposure. Potential scenarios were analyzed through sensitivity analysis to examine the merit of increasing recycling rates, using chemical recycling, and implementing additive extraction post-recycling. Our analyses identified that the current state of plastic EoL management possesses high mass flow intensity toward incineration and landfilling. Although maximizing the plastic recycling rate is a reasonably straightforward goal for enhancing material circularity, the conventional mechanical recycling method requires improvement because major chemical additive release and contamination routes act as obstacles to achieving high-quality plastics for future reuse and should be mitigated through chemical recycling and additive extraction. The potential hazards and risks identified in this research create an opportunity to design a safer closed-loop plastic recycling infrastructure to handle additives strategically and support sustainable materials management efforts to transform the US plastic economy from linear to circular. [Display omitted] •Material flow analysis estimates chemical additive releases throughout plastic end-of-life (EoL).•Generic scenario analysis identifies and quantifies releases and occupational hazards in plastic EoL stage.•Maximizing recycling can reduce uncontrolled chemical additive releases.•Combining chemical recycling with mechanical recycling increases upcycled plastic quality.
ISSN:0304-3894
1873-3336
1873-3336
DOI:10.1016/j.jhazmat.2022.129902