Hox11-expressing interstitial cells contribute to adult skeletal muscle at homeostasis

Interstitial stromal cells play critical roles in muscle development, regeneration and repair and we have previously reported that Hoxa11 and Hoxd11 are expressed in the interstitial cells of muscles attached to the zeugopod, and are crucial for the proper embryonic patterning of these muscles. Hoxa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2023-02, Vol.150 (4)
Hauptverfasser: Flynn, Corey G K, Ginkel, Paul R Van, Hubert, Katharine A, Guo, Qingyuan, Hrycaj, Steven M, McDermott, Aubrey E, Madruga, Angelo, Miller, Anna P, Wellik, Deneen M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interstitial stromal cells play critical roles in muscle development, regeneration and repair and we have previously reported that Hoxa11 and Hoxd11 are expressed in the interstitial cells of muscles attached to the zeugopod, and are crucial for the proper embryonic patterning of these muscles. Hoxa11eGFP expression continues in a subset of muscle interstitial cells through adult stages. The induction of Hoxa11-CreERT2-mediated lineage reporting (Hoxa11iTom) at adult stages in mouse results in lineage induction only in the interstitial cells. However, Hoxa11iTom+ cells progressively contribute to muscle fibers at subsequent stages. The contribution to myofibers exceeds parallel Pax7-CreERT2-mediated lineage labeling. Nuclear-specific lineage labeling demonstrates that Hoxa11-expressing interstitial cells contribute nuclear contents to myofibers. Crucially, at no point after Hoxa11iTom induction are satellite cells lineage labeled. When examined in vitro, isolated Hoxa11iTom+ interstitial cells are not capable of forming myotubes, but Hoxa11iTom+ cells can contribute to differentiating myotubes, supporting Hox-expressing interstitial cells as a new population of muscle progenitors, but not stem cells. This work adds to a small but growing body of evidence that supports a satellite cell-independent source of muscle tissue in vivo.
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.201026