Robo-vision! 3D mesh generation of a scene for a robot for planar and non-planar complex objects

This paper presents a novel architecture to generate a world model in terms of mesh from a continuous image stream with depth information extracted from a robot’s ego-vision camera. We propose two algorithms for planar and non-planar mesh generation. A Cartesian grid-based mesh fitting algorithm is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2023-11, Vol.82 (27), p.42641-42659
Hauptverfasser: Agarwal, Swapna, Maity, Soumyadip, Barua, Hrishav Bakul, Bhowmick, Brojeshwar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel architecture to generate a world model in terms of mesh from a continuous image stream with depth information extracted from a robot’s ego-vision camera. We propose two algorithms for planar and non-planar mesh generation. A Cartesian grid-based mesh fitting algorithm is proposed for mesh generation of planar objects. For mesh generation of non-planar objects, we propose a Self Organization Map based algorithm. The proposed algorithm better approaches the boundary and overall shape of the objects compared to State-Of-the-Art (SOA). Extensive experiments done on three public datasets show that our method surpasses SOA both qualitatively and quantitatively.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-023-15111-8