Metabolomic Markers of Ultra-Processed Food and Incident CKD
High ultra-processed food consumption is associated with higher risk of CKD. However, there is no biomarker for ultra-processed food, and the mechanism through which ultra-processed food is associated with CKD is not clear. Metabolomics can provide objective biomarkers of ultra-processed food and pr...
Gespeichert in:
Veröffentlicht in: | Clinical journal of the American Society of Nephrology 2023-03, Vol.18 (3), p.327-336 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High ultra-processed food consumption is associated with higher risk of CKD. However, there is no biomarker for ultra-processed food, and the mechanism through which ultra-processed food is associated with CKD is not clear. Metabolomics can provide objective biomarkers of ultra-processed food and provide important insights into the mechanisms by which ultra-processed food is associated with risk of incident CKD. Our objective was to identify serum metabolites associated with ultra-processed food consumption and investigate whether ultra-processed food-associated metabolites are prospectively associated with incident CKD.
We used data from 3751 Black and White men and women (aged 45-64 years) in the Atherosclerosis Risk in Communities study. Dietary intake was assessed using a semiquantitative 66-item food frequency questionnaire, and ultra-processed food was classified using the NOVA classification system. Multivariable linear regression models were used to identify the association between 359 metabolites and ultra-processed food consumption. Cox proportional hazards models were used to investigate the prospective association of ultra-processed food-associated metabolites with incident CKD.
Twelve metabolites (saccharine, homostachydrine, stachydrine, N2, N2-dimethylguanosine, catechol sulfate, caffeine, 3-methyl-2-oxovalerate, theobromine, docosahexaenoate, glucose, mannose, and bradykinin) were significantly associated with ultra-processed food consumption after controlling for false discovery rate |
---|---|
ISSN: | 1555-9041 1555-905X |
DOI: | 10.2215/CJN.0000000000000062 |