Evaluation of Environmental Stability and Disinfectant Effectiveness for Human Coronavirus OC43 on Human Skin Surface
The environmental stability of human coronavirus OC43 (HCoV-OC43) on the surface of human skin and the effectiveness of disinfectant against HCoV-OC43, which are important to prevent contact transmission, have not been clarified in previous studies. Using previously generated models, we evaluated HC...
Gespeichert in:
Veröffentlicht in: | Microbiology spectrum 2023-02, Vol.11 (2), p.e0238122-e0238122 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The environmental stability of human coronavirus OC43 (HCoV-OC43) on the surface of human skin and the effectiveness of disinfectant against HCoV-OC43, which are important to prevent contact transmission, have not been clarified in previous studies. Using previously generated models, we evaluated HCoV-OC43 stability and disinfection effectiveness. Then we compared the results with those for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The median survival time of HCoV-OC43 on the surface of human skin was 24.6 h (95% confidence interval, 19.7 to 29.6 h), which was higher than that of SARS-CoV-2 (10.8 h). Although the
disinfectant effectiveness evaluation showed that HCoV-OC43 has a higher ethanol resistance than SARS-CoV-2, HCoV-OC43 on the skin surface was completely inactivated by a minimum of 50% ethanol within 5 s (the log reduction values were >4.0). Moreover, 1.0% chlorhexidine gluconate and 0.2% benzalkonium chloride showed relatively high disinfectant effectiveness, and the log reduction values when these disinfectants were applied for 15 s were >3.0. HCoV-OC43 is highly stable on the skin surface, which may increase the risk of contact transmission. Although HCoV-OC43 has relatively high ethanol resistance, appropriate hand hygiene practices with current alcohol-based disinfectants sufficiently reduce the risk of contact transmission.
This study revealed the environmental stability of HCoV-OC43 and disinfectant effectiveness against HCoV-OC43, which had not been demonstrated in previous studies. HCoV-OC43 is highly stable on the surface of human skin, with a survival time of approximately 25 h. High stability of HCoV-OC43 may increase the risk of contact transmission. Furthermore, the
disinfectant effectiveness evaluation showed that HCoV-OC43, which is classified as an envelope virus, has a relatively high ethanol resistance. This finding suggests that disinfectant effectiveness may vary greatly depending on the virus and that each virus targeted for infection control should be evaluated individually. HCoV-OC43 on the skin surface was rapidly inactivated by 50% ethanol, which suggests that appropriate hand hygiene practices with current alcohol-based disinfectants can sufficiently reduce the risk of HCoV-OC43 contact transmission. |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/spectrum.02381-22 |