Evaluation of Environmental Stability and Disinfectant Effectiveness for Human Coronavirus OC43 on Human Skin Surface

The environmental stability of human coronavirus OC43 (HCoV-OC43) on the surface of human skin and the effectiveness of disinfectant against HCoV-OC43, which are important to prevent contact transmission, have not been clarified in previous studies. Using previously generated models, we evaluated HC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology spectrum 2023-02, Vol.11 (2), p.e0238122-e0238122
Hauptverfasser: Watanabe, Naoto, Hirose, Ryohei, Yamauchi, Katsuma, Miyazaki, Hajime, Bandou, Risa, Yoshida, Takuma, Doi, Toshifumi, Inoue, Ken, Dohi, Osamu, Yoshida, Naohisa, Uchiyama, Kazuhiko, Ishikawa, Takeshi, Takagi, Tomohisa, Konishi, Hideyuki, Ikegaya, Hiroshi, Nakaya, Takaaki, Itoh, Yoshito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The environmental stability of human coronavirus OC43 (HCoV-OC43) on the surface of human skin and the effectiveness of disinfectant against HCoV-OC43, which are important to prevent contact transmission, have not been clarified in previous studies. Using previously generated models, we evaluated HCoV-OC43 stability and disinfection effectiveness. Then we compared the results with those for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The median survival time of HCoV-OC43 on the surface of human skin was 24.6 h (95% confidence interval, 19.7 to 29.6 h), which was higher than that of SARS-CoV-2 (10.8 h). Although the disinfectant effectiveness evaluation showed that HCoV-OC43 has a higher ethanol resistance than SARS-CoV-2, HCoV-OC43 on the skin surface was completely inactivated by a minimum of 50% ethanol within 5 s (the log reduction values were >4.0). Moreover, 1.0% chlorhexidine gluconate and 0.2% benzalkonium chloride showed relatively high disinfectant effectiveness, and the log reduction values when these disinfectants were applied for 15 s were >3.0. HCoV-OC43 is highly stable on the skin surface, which may increase the risk of contact transmission. Although HCoV-OC43 has relatively high ethanol resistance, appropriate hand hygiene practices with current alcohol-based disinfectants sufficiently reduce the risk of contact transmission. This study revealed the environmental stability of HCoV-OC43 and disinfectant effectiveness against HCoV-OC43, which had not been demonstrated in previous studies. HCoV-OC43 is highly stable on the surface of human skin, with a survival time of approximately 25 h. High stability of HCoV-OC43 may increase the risk of contact transmission. Furthermore, the disinfectant effectiveness evaluation showed that HCoV-OC43, which is classified as an envelope virus, has a relatively high ethanol resistance. This finding suggests that disinfectant effectiveness may vary greatly depending on the virus and that each virus targeted for infection control should be evaluated individually. HCoV-OC43 on the skin surface was rapidly inactivated by 50% ethanol, which suggests that appropriate hand hygiene practices with current alcohol-based disinfectants can sufficiently reduce the risk of HCoV-OC43 contact transmission.
ISSN:2165-0497
2165-0497
DOI:10.1128/spectrum.02381-22