A Novel Subgroup of UCHL1-Related Cancers Is Associated with Genomic Instability and Sensitivity to DNA-Damaging Treatment
Identification of molecularly-defined cancer subgroups and targeting tumor-specific vulnerabilities have a strong potential to improve treatment response and patient outcomes but remain an unmet challenge of high clinical relevance, especially in head and neck squamous cell carcinoma (HNSC). We esta...
Gespeichert in:
Veröffentlicht in: | Cancers 2023-03, Vol.15 (6), p.1655 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Identification of molecularly-defined cancer subgroups and targeting tumor-specific vulnerabilities have a strong potential to improve treatment response and patient outcomes but remain an unmet challenge of high clinical relevance, especially in head and neck squamous cell carcinoma (HNSC).
We established a UCHL1-related gene set to identify and molecularly characterize a UCHL1-related subgroup within TCGA-HNSC by integrative analysis of multi-omics data. An extreme gradient boosting model was trained on TCGA-HNSC based on GSVA scores for gene sets of the MSigDB to robustly predict UCHL1-related cancers in other solid tumors and cancer cell lines derived thereof. Potential vulnerabilities of UCHL1-related cancer cells were elucidated by an in-silico drug screening approach.
We established a 497-gene set, which stratified the TCGA-HNSC cohort into distinct subgroups with a UCHL1-related or other phenotype. UCHL1-related HNSC were characterized by higher frequencies of genomic alterations, which was also evident for UCHL1-related cancers of other solid tumors predicted by the classification model. These data indicated an impaired maintenance of genomic integrity and vulnerability for DNA-damaging treatment, which was supported by a favorable prognosis of UCHL1-related tumors after radiotherapy, and a higher sensitivity of UCHL1-related cancer cells to irradiation or DNA-damaging compounds (e.g., Oxaliplatin).
Our study established UCHL1-related cancers as a novel subgroup across most solid tumor entities with a unique molecular phenotype and DNA-damaging treatment as a specific vulnerability, which requires further proof-of-concept in pre-clinical models and future clinical trials. |
---|---|
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers15061655 |