Efficient Synthesis of 2D Mica Nanosheets by Solvothermal and Microwave-Assisted Techniques for CO2 Capture Applications

Mica, a commonly occurring mineral, has significant potential for various applications due to its unique structure and properties. However, due to its non-Van Der Waals bonded structure, it is difficult to exfoliate mica into ultrathin nanosheets. In this work, we report a rapid solvothermal microwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-04, Vol.16 (7), p.2921
Hauptverfasser: Weerasinghe, P. Vishakha T., Wu, Shunnian, Lee, W. P. Cathie, Lin, Ming, Anariba, Franklin, Li, Xu, Seng, Debbie Hwee Leng, Sim, Jia Yu, Wu, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mica, a commonly occurring mineral, has significant potential for various applications due to its unique structure and properties. However, due to its non-Van Der Waals bonded structure, it is difficult to exfoliate mica into ultrathin nanosheets. In this work, we report a rapid solvothermal microwave synthesis of 2D mica with short reaction time and energy conservation. The resulting exfoliated 2D mica nanosheets (eMica nanosheets) were characterized by various techniques, and their ability to capture CO2 was tested by thermogravimetric analysis (TGA). Our results showed an 87% increase in CO2 adsorption capacity with eMica nanosheets compared to conventional mica. Further characterization by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), as well as first-principles calculations, showed that the high specific surface area and deposited K2CO3 layer contribute to the increased CO2 adsorption on the mica nanosheets. These results speak to the potential of high-quality eMica nanosheets and efficient synthesis processes to open new avenues for new physical properties of 2D materials and the development of CO2 capture technologies.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16072921