Negative Magnetoresistance in Hopping Regime of Lightly Doped Thermoelectric SnSe

Semiconducting SnSe, an analog of black phosphorus, recently attracted great scientific interest due to a disputed report of a large thermoelectric figure of merit, which has not been reproduced subsequently. Here we concentrate on the low-temperature ground state. To gain a better understanding of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-04, Vol.16 (7), p.2863
Hauptverfasser: Zorić, Marija, Dhami, Naveen Singh, Bader, Kristian, Gille, Peter, Smontara, Ana, Popčević, Petar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconducting SnSe, an analog of black phosphorus, recently attracted great scientific interest due to a disputed report of a large thermoelectric figure of merit, which has not been reproduced subsequently. Here we concentrate on the low-temperature ground state. To gain a better understanding of the system, we present magneto-transport properties in high-quality single crystals of as-grown, lightly doped SnSe down to liquid helium temperatures. We show that SnSe behaves as a p-type doped semiconductor in the vicinity of a metal-insulator transition. Electronic transport at the lowest temperatures is dominated by the hopping mechanism. Negative magnetoresistance at low fields is well described by antilocalization, while positive magnetoresistance at higher fields is consistent with the shrinkage of localized impurity wavefunctions. At higher temperatures, a dilute metallic regime is realized where elusive and resistivity dependence is observed, posing a challenge to theoretical comprehension of the underlying physical mechanism.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16072863