Respiratory exposures associated with silicon carbide production: estimation of cumulative exposures for an epidemiological study

Silicon carbide is produced by heating a mixture of petroleum coke and silica sand to approximately 2000 degrees C in an electric furnace for 36 hours. During heating, large amounts of carbon monoxide are released, sulphur dioxide is produced from residual sulphur in the coke, and hydrocarbon fume i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British Journal of Industrial Medicine 1984-02, Vol.41 (1), p.100-108
Hauptverfasser: Smith, T J, Hammond, S K, Laidlaw, F, Fine, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon carbide is produced by heating a mixture of petroleum coke and silica sand to approximately 2000 degrees C in an electric furnace for 36 hours. During heating, large amounts of carbon monoxide are released, sulphur dioxide is produced from residual sulphur in the coke, and hydrocarbon fume is produced by pyrolysis of the coke. Loading and unloading furnaces causes exposures to respirable dust containing crystalline silica, silicon carbide, and hydrocarbons. In the autumn of 1980 extensive measurements were made of personal exposures to air contaminants. Eight hour time weighted exposures to sulphur dioxide ranged from less than 0.1 ppm to 1.5 ppm and respirable participate exposures ranged from 0.01 mg/m3 to 9.0 mg/m3. Geometric mean particulate exposures for jobs ranged from 0.1 mg/m3 to 1.46 mg/m3. The particulate contained varying amounts of alpha-quartz, ranging from less than 1% to 17%, and most quartz exposures were substantially below the threshold limit value of 100 micrograms/m3. Only traces of cristobalite (less than 1%) were found in the particulate. Median exposures to air contaminants in each job were estimated. Since the operations at the plant had been stable over the past 30 years, it was possible to estimate long term exposures of workers to sulphur dioxide, respirable particulate, quartz, total inorganic material, and extractable organic material. Cumulative exposure (average concentration times exposure duration) for each of the air contaminants was estimated for each worker using his job history. There was sufficient independent variability in the sulphur dioxide and respirable particulate cumulative exposures to make an assessment of their independent effects feasible. The theoretical basis for using the cumulative exposure index and its shortcomings for epidemiological applications were presented.
ISSN:0007-1072
1351-0711
1470-7926
DOI:10.1136/oem.41.1.100