Quantile planes without crossing via nonlinear programming

Background and objective: In this note we propose a nonlinear programming approach for simultaneous fitting of quantile regression models for two or more quantiles. The approach is straightforward, flexible and practical. We apply this approach to a dataset of lactic acid values from a screening dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2018-01, Vol.153, p.185-190
1. Verfasser: Hutson, Alan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and objective: In this note we propose a nonlinear programming approach for simultaneous fitting of quantile regression models for two or more quantiles. The approach is straightforward, flexible and practical. We apply this approach to a dataset of lactic acid values from a screening dataset in childhood malaria. Methods: We carry out the fitting of simultaneous quantile regression models using a specific definition of a quantile as an expectation via nonlinear programming methods given certain monotonicity constraints. Results: We illustrate through simulations and examples that are new approach to simultaneous quantile regression is practical and feasible. The approach is supplemented by providing a bootstrap framework for confidence interval estimation. Conclusions: Our nonlinear programming approach towards solving the simultaneous quantile regression fitting is shown to be a practical approach that should appeal to statistical practitioners.
ISSN:0169-2607
1872-7565
DOI:10.1016/j.cmpb.2017.10.019