Manufacturing flexible vascular models for cardiovascular surgery planning and endovascular procedure simulations: An approach to segmentation and post-processing with open-source software and end-user 3D printers
306Three-dimensional (3D)-printed vascular models for cardiovascular surgery planning and endovascular procedure simulations often lack realistic biological tissues mimicking material properties, including flexibility or transparency, or both. Transparent silicone or silicone-like vascular models we...
Gespeichert in:
Veröffentlicht in: | International journal of bioprinting 2023-01, Vol.9 (2), p.669-669 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 306Three-dimensional (3D)-printed vascular models for cardiovascular surgery planning and endovascular procedure simulations often lack realistic biological tissues mimicking material properties, including flexibility or transparency, or both. Transparent silicone or silicone-like vascular models were not available for end-user 3D printers and had to be fabricated using complex and cost-intensive workarounds. This limitation has now been overcome by novel liquid resins with biological tissue properties. These new materials enable simple and low-cost fabrication of transparent and flexible vascular models using end-user stereolithography 3D printers and are promising technological advances toward more realistic patient-specific, radiation-free procedure simulations and planning in cardiovascular surgery and interventional radiology. This paper presents our patient-specific manufacturing process of fabricating transparent and flexible vascular models using freely available open-source software for segmentation and 3D post-processing, aiming to facilitate the integration of 3D printing into clinical care. |
---|---|
ISSN: | 2424-7723 2424-8002 |
DOI: | 10.18063/ijb.v9i2.669 |