Retrospective analysis of cancer-specific gene expression panel for thyroid fine needle aspiration specimens
Background While molecular testing is a promising strategy for preoperative assessment of cytologically indeterminate thyroid nodules, thyroid fine needle aspiration biopsy (FNA) presents unique challenges for molecular assays, including contaminating peripheral blood mononuclear cells (PBMC) and va...
Gespeichert in:
Veröffentlicht in: | Journal of cancer research and clinical oncology 2021-10, Vol.147 (10), p.2983-2991 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
While molecular testing is a promising strategy for preoperative assessment of cytologically indeterminate thyroid nodules, thyroid fine needle aspiration biopsy (FNA) presents unique challenges for molecular assays, including contaminating peripheral blood mononuclear cells (PBMC) and variable numbers of evaluable epithelial thyroid cells. Moreover, the newly recognized entity, noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), has added an additional challenge to the currently available molecular diagnostic platforms. New diagnostic tools are still needed to correctly distinguish benign and malignant thyroid nodules preoperatively.
Methods
Twenty-two transcript splice variants from 12 genes we previously identified as discriminating benign from malignant thyroid nodules were characterized in 80 frozen thyroid tumors from 8 histological subtypes. Isoforms detectable in PBMC were excluded, and the 5 most discriminating isoforms were further validated by real-time quantitative PCR (qPCR) on intraoperative FNA samples from 59 malignant tumors, 55 benign nodules, and 23 NIFTP samples. The qPCR threshold cycle values for each transcript were normalized to the thyrocyte-specific thyroid peroxidase isoform 1 (TPO1) and z-transformed. Receiver operating characteristic (ROC) analyses of the composite transcript scores were used to evaluate classification of thyroid FNAs by the 5-gene isoform expression panel.
Results
A molecular signature was developed by combining expression levels of specific isoforms of CDH3, FNDC4, HMGA2, KLK7, and PLAG1. FNAs containing at least 12–36 thyrocytes were sufficient for this assay. The 5-gene composite score achieved an area under the ROC curve (AUC) of 0.86 for distinguishing malignant from benign nodules, with a specificity of 91%, sensitivity of 75%, negative predictive value of 91%, and positive predictive value of 74%.
Conclusion
Our newly developed 5-gene isoform expression panel distinguishes benign from malignant thyroid tumors and, may help distinguish benign from malignant thyroid nodules in the context of the new NIFTP subtype. |
---|---|
ISSN: | 0171-5216 1432-1335 |
DOI: | 10.1007/s00432-021-03706-3 |