circNFXL1 Modulates the Kv2.1 Channel Function in Hypoxic Human Pulmonary Artery Smooth Muscle Cells via Sponging miR-29b-2-5p as a Competitive Endogenous RNA
Pulmonary arterial hypertension is characterized by abnormal pulmonary vasoconstriction and vascular remodeling caused by the dysregulation of K + channels in PA smooth muscle cells (PASMCs). However, how the K + channels are dysregulated is still unclear. Circular RNAs (circRNAs) are noncoding RNAs...
Gespeichert in:
Veröffentlicht in: | Journal of cardiovascular pharmacology 2023-04, Vol.81 (4), p.292-299 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pulmonary arterial hypertension is characterized by abnormal pulmonary vasoconstriction and vascular remodeling caused by the dysregulation of K + channels in PA smooth muscle cells (PASMCs). However, how the K + channels are dysregulated is still unclear. Circular RNAs (circRNAs) are noncoding RNAs with a closed-loop structure capable of sponging microRNAs (miRs), thus regulating gene expression at the post-transcriptional level. Our previous studies have demonstrated the importance of one novel circRNA (hsa_circNFXL1_009, circNFXL1) in pulmonary arterial hypertension patients, playing as a critical regulator for K + channel activation in hypoxic human PASMCs (hPASMCs). Here, we explore the mechanisms underlying circNFXL1-regulated K + channel expression and functions in hypoxic hPASMCs. In cultured hPASMCs, the reduction of Kv current induced by hypoxia was significantly recovered by delivering exogenous circNFXL1. Moreover, luciferase, quantitative reverse transcription-quantitative polymerase chain reaction, western blot, and mutagenesis studies confirmed that circNFXL1 reversed hypoxia-induced inhibitory effects on the Kv2.1 channel via sponging hsa-miR-29b-2-5p (miR-29b-2). Furthermore, we found that circNFXL1 reversed the miR-29b-induced Kv2.1 channel dysfunction at the whole-cell and single-channel level in HEK cells using a patch-clamp. Finally, calcium imaging revealed that hypoxia also triggered a substantial rise in the cytosolic calcium concentration ([Ca2 + ]cyt) in hPASMCs, and this hypoxia-induced elevation of [Ca2 + ]cyt was reduced by circNFXL1 through miR-29b-2. These data suggested that circNFXL1-mediated regulation of the Kv2.1 channel activation and the related intracellular calcium concentration may contribute to the effects of hypoxic pulmonary vasoconstriction. |
---|---|
ISSN: | 0160-2446 1533-4023 1533-4023 |
DOI: | 10.1097/FJC.0000000000001396 |