Anion Exchange Resin and Inorganic Anion Parameter Determination for Model Validation and Evaluation of Unintended Consequences during PFAS Treatment
When implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts). To understand potential effects, four drinking water-re...
Gespeichert in:
Veröffentlicht in: | ACS ES&T water 2023-01, Vol.3 (2), p.576-587 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 2 |
container_start_page | 576 |
container_title | ACS ES&T water |
container_volume | 3 |
creator | Smith, Samantha J. Wahman, David G. Kleiner, Eric J. Abulikemu, Gulizhaer Stebel, Eva K. Gray, Brooke N. Datsov, Boris Crone, Brian C. Taylor, Rose D. Womack, Erika Gastaldo, Cameron X. Sorial, George Lytle, Darren Pressman, Jonathan G. Haupert, Levi M. |
description | When implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts). To understand potential effects, four drinking water-relevant IAs (bicarbonate, chloride, sulfate, and nitrate) and three gel-type, strong-base AEX resins were evaluated. Batch binary isotherm experiments provided estimates of IA selectivity with respect to chloride (K x/C) for IA/resin combinations where bicarbonate < sulfate ≤ nitrate at studied conditions. A multi-IA batch experiment demonstrated that binary isotherm-determined K x/C values predicted competitive behavior. Subsequent column experiments with and without natural organic matter (NOM) allowed for the validation of a new ion exchange column model (IEX-CM; https://github.com/USEPA/Water_Treatment_Models). IA breakthrough was well-simulated using binary isotherm-determined K x/C values and was minimally impacted by NOM. Initial AEX effluent water quality changes with corrosion implications included increased chloride and decreased sulfate and bicarbonate concentrations, resulting in elevated chloride-to-sulfate mass ratios (CSMRs) and Larson ratios (LRs) and depressed pH until the complete breakthrough of the relevant IA(s). IEX-CM utility was further illustrated by simulating the treatment of low-IA source water and a change in the source water to understand the resulting duration of changes in IAs and water quality parameters. |
doi_str_mv | 10.1021/acsestwater.2c00572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10078613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799176960</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-4b91ff758ea8fe35b295836b67d351e358b4b772a594380f412de820a2b57c143</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtRCorUq_AAl5yWZaP5I4WaHRMIVKRVR9sLVu7Jupq8QudlLgQ_hfPMq0GjZs_Dg-D9uHkHecnXIm-BmYhGn8CSPGU2EYK5V4RY5E1bAFq6R6vbc-JCcpPTDGhCxrruoDcigVk2Uh5BH5s_QueLr-Ze7Bb5BeY3Kegrf0woe4Ae8MnSlXEGHAnEc_bcfBeRi3eBci_Ros9vQ79M7O4NZg_QT9NG9DR--88yN6i5augk_4Y0JvMFE7Rec39Op8eUNvI8I4oB_fkjcd9AlPdvMxuTtf366-LC6_fb5YLS8XUBTVuCjahnedKmuEukNZtqIpa1m1lbKy5Bmo26JVSkDZFLJmXcGFxVowEG2pDC_kMfk4-z5O7YDW5OgIvX6MboD4Wwdw-t8T7-71JjxpzpiqKy6zw4edQwz5SWnUg0sG-x48hilpoZqGq6qpWKbKmWpiSCli95LDmd6WqvdK1btSs-r9_hVfNM8VZsLZTMhq_RCm6POP_dfyL1Wes9s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799176960</pqid></control><display><type>article</type><title>Anion Exchange Resin and Inorganic Anion Parameter Determination for Model Validation and Evaluation of Unintended Consequences during PFAS Treatment</title><source>American Chemical Society Journals</source><creator>Smith, Samantha J. ; Wahman, David G. ; Kleiner, Eric J. ; Abulikemu, Gulizhaer ; Stebel, Eva K. ; Gray, Brooke N. ; Datsov, Boris ; Crone, Brian C. ; Taylor, Rose D. ; Womack, Erika ; Gastaldo, Cameron X. ; Sorial, George ; Lytle, Darren ; Pressman, Jonathan G. ; Haupert, Levi M.</creator><creatorcontrib>Smith, Samantha J. ; Wahman, David G. ; Kleiner, Eric J. ; Abulikemu, Gulizhaer ; Stebel, Eva K. ; Gray, Brooke N. ; Datsov, Boris ; Crone, Brian C. ; Taylor, Rose D. ; Womack, Erika ; Gastaldo, Cameron X. ; Sorial, George ; Lytle, Darren ; Pressman, Jonathan G. ; Haupert, Levi M.</creatorcontrib><description>When implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts). To understand potential effects, four drinking water-relevant IAs (bicarbonate, chloride, sulfate, and nitrate) and three gel-type, strong-base AEX resins were evaluated. Batch binary isotherm experiments provided estimates of IA selectivity with respect to chloride (K x/C) for IA/resin combinations where bicarbonate < sulfate ≤ nitrate at studied conditions. A multi-IA batch experiment demonstrated that binary isotherm-determined K x/C values predicted competitive behavior. Subsequent column experiments with and without natural organic matter (NOM) allowed for the validation of a new ion exchange column model (IEX-CM; https://github.com/USEPA/Water_Treatment_Models). IA breakthrough was well-simulated using binary isotherm-determined K x/C values and was minimally impacted by NOM. Initial AEX effluent water quality changes with corrosion implications included increased chloride and decreased sulfate and bicarbonate concentrations, resulting in elevated chloride-to-sulfate mass ratios (CSMRs) and Larson ratios (LRs) and depressed pH until the complete breakthrough of the relevant IA(s). IEX-CM utility was further illustrated by simulating the treatment of low-IA source water and a change in the source water to understand the resulting duration of changes in IAs and water quality parameters.</description><identifier>ISSN: 2690-0637</identifier><identifier>EISSN: 2690-0637</identifier><identifier>DOI: 10.1021/acsestwater.2c00572</identifier><identifier>PMID: 37035423</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS ES&T water, 2023-01, Vol.3 (2), p.576-587</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-4b91ff758ea8fe35b295836b67d351e358b4b772a594380f412de820a2b57c143</citedby><cites>FETCH-LOGICAL-a446t-4b91ff758ea8fe35b295836b67d351e358b4b772a594380f412de820a2b57c143</cites><orcidid>0000-0001-7090-7773 ; 0000-0002-5282-4541 ; 0000-0003-1973-4613 ; 0000-0001-6203-7421 ; 0000-0002-0167-8468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsestwater.2c00572$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsestwater.2c00572$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37035423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Samantha J.</creatorcontrib><creatorcontrib>Wahman, David G.</creatorcontrib><creatorcontrib>Kleiner, Eric J.</creatorcontrib><creatorcontrib>Abulikemu, Gulizhaer</creatorcontrib><creatorcontrib>Stebel, Eva K.</creatorcontrib><creatorcontrib>Gray, Brooke N.</creatorcontrib><creatorcontrib>Datsov, Boris</creatorcontrib><creatorcontrib>Crone, Brian C.</creatorcontrib><creatorcontrib>Taylor, Rose D.</creatorcontrib><creatorcontrib>Womack, Erika</creatorcontrib><creatorcontrib>Gastaldo, Cameron X.</creatorcontrib><creatorcontrib>Sorial, George</creatorcontrib><creatorcontrib>Lytle, Darren</creatorcontrib><creatorcontrib>Pressman, Jonathan G.</creatorcontrib><creatorcontrib>Haupert, Levi M.</creatorcontrib><title>Anion Exchange Resin and Inorganic Anion Parameter Determination for Model Validation and Evaluation of Unintended Consequences during PFAS Treatment</title><title>ACS ES&T water</title><addtitle>ACS EST Water</addtitle><description>When implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts). To understand potential effects, four drinking water-relevant IAs (bicarbonate, chloride, sulfate, and nitrate) and three gel-type, strong-base AEX resins were evaluated. Batch binary isotherm experiments provided estimates of IA selectivity with respect to chloride (K x/C) for IA/resin combinations where bicarbonate < sulfate ≤ nitrate at studied conditions. A multi-IA batch experiment demonstrated that binary isotherm-determined K x/C values predicted competitive behavior. Subsequent column experiments with and without natural organic matter (NOM) allowed for the validation of a new ion exchange column model (IEX-CM; https://github.com/USEPA/Water_Treatment_Models). IA breakthrough was well-simulated using binary isotherm-determined K x/C values and was minimally impacted by NOM. Initial AEX effluent water quality changes with corrosion implications included increased chloride and decreased sulfate and bicarbonate concentrations, resulting in elevated chloride-to-sulfate mass ratios (CSMRs) and Larson ratios (LRs) and depressed pH until the complete breakthrough of the relevant IA(s). IEX-CM utility was further illustrated by simulating the treatment of low-IA source water and a change in the source water to understand the resulting duration of changes in IAs and water quality parameters.</description><issn>2690-0637</issn><issn>2690-0637</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu1DAUtRCorUq_AAl5yWZaP5I4WaHRMIVKRVR9sLVu7Jupq8QudlLgQ_hfPMq0GjZs_Dg-D9uHkHecnXIm-BmYhGn8CSPGU2EYK5V4RY5E1bAFq6R6vbc-JCcpPTDGhCxrruoDcigVk2Uh5BH5s_QueLr-Ze7Bb5BeY3Kegrf0woe4Ae8MnSlXEGHAnEc_bcfBeRi3eBci_Ros9vQ79M7O4NZg_QT9NG9DR--88yN6i5augk_4Y0JvMFE7Rec39Op8eUNvI8I4oB_fkjcd9AlPdvMxuTtf366-LC6_fb5YLS8XUBTVuCjahnedKmuEukNZtqIpa1m1lbKy5Bmo26JVSkDZFLJmXcGFxVowEG2pDC_kMfk4-z5O7YDW5OgIvX6MboD4Wwdw-t8T7-71JjxpzpiqKy6zw4edQwz5SWnUg0sG-x48hilpoZqGq6qpWKbKmWpiSCli95LDmd6WqvdK1btSs-r9_hVfNM8VZsLZTMhq_RCm6POP_dfyL1Wes9s</recordid><startdate>20230119</startdate><enddate>20230119</enddate><creator>Smith, Samantha J.</creator><creator>Wahman, David G.</creator><creator>Kleiner, Eric J.</creator><creator>Abulikemu, Gulizhaer</creator><creator>Stebel, Eva K.</creator><creator>Gray, Brooke N.</creator><creator>Datsov, Boris</creator><creator>Crone, Brian C.</creator><creator>Taylor, Rose D.</creator><creator>Womack, Erika</creator><creator>Gastaldo, Cameron X.</creator><creator>Sorial, George</creator><creator>Lytle, Darren</creator><creator>Pressman, Jonathan G.</creator><creator>Haupert, Levi M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7090-7773</orcidid><orcidid>https://orcid.org/0000-0002-5282-4541</orcidid><orcidid>https://orcid.org/0000-0003-1973-4613</orcidid><orcidid>https://orcid.org/0000-0001-6203-7421</orcidid><orcidid>https://orcid.org/0000-0002-0167-8468</orcidid></search><sort><creationdate>20230119</creationdate><title>Anion Exchange Resin and Inorganic Anion Parameter Determination for Model Validation and Evaluation of Unintended Consequences during PFAS Treatment</title><author>Smith, Samantha J. ; Wahman, David G. ; Kleiner, Eric J. ; Abulikemu, Gulizhaer ; Stebel, Eva K. ; Gray, Brooke N. ; Datsov, Boris ; Crone, Brian C. ; Taylor, Rose D. ; Womack, Erika ; Gastaldo, Cameron X. ; Sorial, George ; Lytle, Darren ; Pressman, Jonathan G. ; Haupert, Levi M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-4b91ff758ea8fe35b295836b67d351e358b4b772a594380f412de820a2b57c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Samantha J.</creatorcontrib><creatorcontrib>Wahman, David G.</creatorcontrib><creatorcontrib>Kleiner, Eric J.</creatorcontrib><creatorcontrib>Abulikemu, Gulizhaer</creatorcontrib><creatorcontrib>Stebel, Eva K.</creatorcontrib><creatorcontrib>Gray, Brooke N.</creatorcontrib><creatorcontrib>Datsov, Boris</creatorcontrib><creatorcontrib>Crone, Brian C.</creatorcontrib><creatorcontrib>Taylor, Rose D.</creatorcontrib><creatorcontrib>Womack, Erika</creatorcontrib><creatorcontrib>Gastaldo, Cameron X.</creatorcontrib><creatorcontrib>Sorial, George</creatorcontrib><creatorcontrib>Lytle, Darren</creatorcontrib><creatorcontrib>Pressman, Jonathan G.</creatorcontrib><creatorcontrib>Haupert, Levi M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS ES&T water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Samantha J.</au><au>Wahman, David G.</au><au>Kleiner, Eric J.</au><au>Abulikemu, Gulizhaer</au><au>Stebel, Eva K.</au><au>Gray, Brooke N.</au><au>Datsov, Boris</au><au>Crone, Brian C.</au><au>Taylor, Rose D.</au><au>Womack, Erika</au><au>Gastaldo, Cameron X.</au><au>Sorial, George</au><au>Lytle, Darren</au><au>Pressman, Jonathan G.</au><au>Haupert, Levi M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anion Exchange Resin and Inorganic Anion Parameter Determination for Model Validation and Evaluation of Unintended Consequences during PFAS Treatment</atitle><jtitle>ACS ES&T water</jtitle><addtitle>ACS EST Water</addtitle><date>2023-01-19</date><risdate>2023</risdate><volume>3</volume><issue>2</issue><spage>576</spage><epage>587</epage><pages>576-587</pages><issn>2690-0637</issn><eissn>2690-0637</eissn><abstract>When implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts). To understand potential effects, four drinking water-relevant IAs (bicarbonate, chloride, sulfate, and nitrate) and three gel-type, strong-base AEX resins were evaluated. Batch binary isotherm experiments provided estimates of IA selectivity with respect to chloride (K x/C) for IA/resin combinations where bicarbonate < sulfate ≤ nitrate at studied conditions. A multi-IA batch experiment demonstrated that binary isotherm-determined K x/C values predicted competitive behavior. Subsequent column experiments with and without natural organic matter (NOM) allowed for the validation of a new ion exchange column model (IEX-CM; https://github.com/USEPA/Water_Treatment_Models). IA breakthrough was well-simulated using binary isotherm-determined K x/C values and was minimally impacted by NOM. Initial AEX effluent water quality changes with corrosion implications included increased chloride and decreased sulfate and bicarbonate concentrations, resulting in elevated chloride-to-sulfate mass ratios (CSMRs) and Larson ratios (LRs) and depressed pH until the complete breakthrough of the relevant IA(s). IEX-CM utility was further illustrated by simulating the treatment of low-IA source water and a change in the source water to understand the resulting duration of changes in IAs and water quality parameters.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37035423</pmid><doi>10.1021/acsestwater.2c00572</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7090-7773</orcidid><orcidid>https://orcid.org/0000-0002-5282-4541</orcidid><orcidid>https://orcid.org/0000-0003-1973-4613</orcidid><orcidid>https://orcid.org/0000-0001-6203-7421</orcidid><orcidid>https://orcid.org/0000-0002-0167-8468</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2690-0637 |
ispartof | ACS ES&T water, 2023-01, Vol.3 (2), p.576-587 |
issn | 2690-0637 2690-0637 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10078613 |
source | American Chemical Society Journals |
title | Anion Exchange Resin and Inorganic Anion Parameter Determination for Model Validation and Evaluation of Unintended Consequences during PFAS Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anion%20Exchange%20Resin%20and%20Inorganic%20Anion%20Parameter%20Determination%20for%20Model%20Validation%20and%20Evaluation%20of%20Unintended%20Consequences%20during%20PFAS%20Treatment&rft.jtitle=ACS%20ES&T%20water&rft.au=Smith,%20Samantha%20J.&rft.date=2023-01-19&rft.volume=3&rft.issue=2&rft.spage=576&rft.epage=587&rft.pages=576-587&rft.issn=2690-0637&rft.eissn=2690-0637&rft_id=info:doi/10.1021/acsestwater.2c00572&rft_dat=%3Cproquest_pubme%3E2799176960%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799176960&rft_id=info:pmid/37035423&rfr_iscdi=true |