Anion Exchange Resin and Inorganic Anion Parameter Determination for Model Validation and Evaluation of Unintended Consequences during PFAS Treatment
When implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts). To understand potential effects, four drinking water-re...
Gespeichert in:
Veröffentlicht in: | ACS ES&T water 2023-01, Vol.3 (2), p.576-587 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts). To understand potential effects, four drinking water-relevant IAs (bicarbonate, chloride, sulfate, and nitrate) and three gel-type, strong-base AEX resins were evaluated. Batch binary isotherm experiments provided estimates of IA selectivity with respect to chloride (K x/C) for IA/resin combinations where bicarbonate < sulfate ≤ nitrate at studied conditions. A multi-IA batch experiment demonstrated that binary isotherm-determined K x/C values predicted competitive behavior. Subsequent column experiments with and without natural organic matter (NOM) allowed for the validation of a new ion exchange column model (IEX-CM; https://github.com/USEPA/Water_Treatment_Models). IA breakthrough was well-simulated using binary isotherm-determined K x/C values and was minimally impacted by NOM. Initial AEX effluent water quality changes with corrosion implications included increased chloride and decreased sulfate and bicarbonate concentrations, resulting in elevated chloride-to-sulfate mass ratios (CSMRs) and Larson ratios (LRs) and depressed pH until the complete breakthrough of the relevant IA(s). IEX-CM utility was further illustrated by simulating the treatment of low-IA source water and a change in the source water to understand the resulting duration of changes in IAs and water quality parameters. |
---|---|
ISSN: | 2690-0637 2690-0637 |
DOI: | 10.1021/acsestwater.2c00572 |