Sour Gas Adsorption on Silica Gels

One of the essential factors for water adsorption on silica gels is the concentration of silanol groups on the silica surface. However, no systematic investigation on the adsorption of sour gas components, methane (CH4), carbon dioxide (CO2), and hydrogen sulfide (H2S) on silica gels with different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-04, Vol.8 (13), p.12592-12602
Hauptverfasser: Jacobs, John H., McKelvie, Kaylan H., Nanji, Safeer, Marriott, Robert A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the essential factors for water adsorption on silica gels is the concentration of silanol groups on the silica surface. However, no systematic investigation on the adsorption of sour gas components, methane (CH4), carbon dioxide (CO2), and hydrogen sulfide (H2S) on silica gels with different textural properties and surface silanol concentrations, has been conducted. Three silica gels of 22, 30, and 60 Å pore sizes, with silanol concentrations of αtotal = 2.516, 2.340, and 2.152 OH nm–2, respectively, were studied in this work. The adsorption data for CH4, CO2, H2S, and H2O at T = 0, 25, and 50 °C on the 22 and 30 Å pore size silica gels were presented, and a comparison of the data for the 60 Å pore size silica gel on the same adsorbates was conducted. All three silica gels showed an adsorption affinity in the order of H2O > H2S > CO2 > CH4. The isosteric heats of adsorption of H2O and H2S had a greater dependence on the silanol concentration than CO2 and CH4. At p < 10 bar, there was no difference in the adsorption per m2 of CH4 between the silica gels (n ads = 1.7 mmol m–2, for all silicas at p = 10 bar), while higher pressures resulted in greater adsorption capacity in the larger pore volume silica gels (at p = 20 bar: n ads = 3.0, 3.3, and 3.4 mmol m–2 for the 22, 30, and 60 Å pore size silicas, respectively). H2S adsorption at low pressures (p < 4 bar) was larger on the samples with larger silanol concentrations (at p = 3 bar: n ads = 6.1, 4.7, and 4.5 mmol m–2 for the 22, 30, and 60 Å pore size silicas, respectively), but above p = 4 bar, the 60 Å pore size silica had a greater adsorption capacity than the 30 Å pore size (at p = 5 bar: n ads = 8.0, 6.0, and 6.2 mmol m–2 for the 22, 30, and 60 Å pore size silicas, respectively).
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c01366