Surface engineering toward stable lithium metal anodes

The lithium (Li) metal anode (LMA) is susceptible to failure due to the growth of Li dendrites caused by an unsatisfied solid electrolyte interface (SEI). With this regard, the design of artificial SEIs with improved physicochemical and mechanical properties has been demonstrated to be important to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-04, Vol.9 (14), p.eadf1550-eadf1550
Hauptverfasser: Lu, Gongxun, Nai, Jianwei, Luan, Deyan, Tao, Xinyong, Lou, Xiong Wen David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lithium (Li) metal anode (LMA) is susceptible to failure due to the growth of Li dendrites caused by an unsatisfied solid electrolyte interface (SEI). With this regard, the design of artificial SEIs with improved physicochemical and mechanical properties has been demonstrated to be important to stabilize the LMAs. This review comprehensively summarizes current efficient strategies and key progresses in surface engineering for constructing protective layers to serve as the artificial SEIs, including pretreating the LMAs with the reagents situated in different primary states of matter (solid, liquid, and gas) or using some peculiar pathways (plasma, for example). The fundamental characterization tools for studying the protective layers on the LMAs are also briefly introduced. Last, strategic guidance for the deliberate design of surface engineering is provided, and the current challenges, opportunities, and possible future directions of these strategies for the development of LMAs in practical applications are discussed.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.adf1550