Analytical and Numerical Investigation of the SIR Mathematical Model

This is a theoretical study of the SIR model — a popular mathematical model of the propagation of infectious diseases. We construct a solution of the Cauchy problem for a system of two ordinary differential equations describing in integral form the concentration dynamics of infected and recovered in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and modeling 2022-07, Vol.33 (3), p.284-299
Hauptverfasser: Semendyaeva, N. L., Orlov, M. V., Rui, Tang, Enping, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is a theoretical study of the SIR model — a popular mathematical model of the propagation of infectious diseases. We construct a solution of the Cauchy problem for a system of two ordinary differential equations describing in integral form the concentration dynamics of infected and recovered individuals in an immune population. A qualitative analysis is carried out of the stationary system states using the Lyapunov function. An expression is obtained for the coordinates of the equilibrium points in terms of the Lambert W -function for arbitrary initial values. The application of the SIR model for the description of COVID-19 propagation dynamic is demonstrated.
ISSN:1046-283X
1573-837X
DOI:10.1007/s10598-023-09572-7