Tropical shrubs living in an extreme environment show convergent ecological strategies but divergent ecophysiological strategies

Trait-based frameworks assess plant survival strategies using different approaches. Some frameworks use functional traits to assign species to a priori defined ecological strategies. Others use functional traits as the central element of a species ecophysiological strategy. We compared these two app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of botany 2023-04, Vol.131 (3), p.491-502
Hauptverfasser: Aragón, Lina, Messier, Julie, Atuesta-Escobar, Natalia, Lasso, Eloisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Trait-based frameworks assess plant survival strategies using different approaches. Some frameworks use functional traits to assign species to a priori defined ecological strategies. Others use functional traits as the central element of a species ecophysiological strategy. We compared these two approaches by asking: (1) what is the primary ecological strategy of three dominant co-occurring shrub species from inselbergs based on the CSR scheme, and (2) what main functional traits characterize the ecophysiological strategy of the species based on their use of carbon, water and light? We conducted our study on a Colombian inselberg. In this extreme environment with multiple stressors (high temperatures and low resource availability), we expected all species to be stress tolerant (S in the CSR scheme) and have similar ecophysiological strategies. We measured 22 anatomical, morphological and physiological leaf traits. The three species have convergent ecological strategies as measured by CSR (S, Acanthella sprucei; and S/CS, Mandevilla lancifolia and Tabebuia orinocensis) yet divergent resource-use strategies as measured by their functional traits. A. sprucei has the most conservative carbon use, risky water use and a shade-tolerant strategy. M. lancifolia has acquisitive carbon use, safe water use and a shade-tolerant strategy. T. orinocensis has intermediate carbon use, safe water use and a light-demanding strategy. Additionally, stomatal traits that are easy to measure are valuable to describe resource-use strategies because they are highly correlated with two physiological functions that are hard to measure: stomatal conductance and maximum photosynthesis per unit mass. The two approaches provide complementary information on species strategies. Plant species can co-occur in extreme environments, such as inselbergs, because they exhibit convergent primary ecological strategies but divergent ecophysiological strategies, allowing them to use limiting resources differently.
ISSN:0305-7364
1095-8290
DOI:10.1093/aob/mcad002