Reversible transformations between the non-porous phases of a flexible coordination network enabled by transient porosity
Flexible metal–organic materials that exhibit stimulus-responsive switching between closed (non-porous) and open (porous) structures induced by gas molecules are of potential utility in gas storage and separation. Such behaviour is currently limited to a few dozen physisorbents that typically switch...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2023-04, Vol.15 (4), p.542-549 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flexible metal–organic materials that exhibit stimulus-responsive switching between closed (non-porous) and open (porous) structures induced by gas molecules are of potential utility in gas storage and separation. Such behaviour is currently limited to a few dozen physisorbents that typically switch through a breathing mechanism requiring structural contortions. Here we show a clathrate (non-porous) coordination network that undergoes gas-induced switching between multiple non-porous phases through transient porosity, which involves the diffusion of guests between discrete voids through intra-network distortions. This material is synthesized as a clathrate phase with solvent-filled cavities; evacuation affords a single-crystal to single-crystal transformation to a phase with smaller cavities. At 298 K, carbon dioxide, acetylene, ethylene and ethane induce reversible switching between guest-free and gas-loaded clathrate phases. For carbon dioxide and acetylene at cryogenic temperatures, phases showing progressively higher loadings were observed and characterized using in situ X-ray diffraction, and the mechanism of diffusion was computationally elucidated.
Sorbent materials that reversibly transform between closed (non-porous) and open (porous) phases on the uptake and release of guests are relevant to gas storage and separation applications. Now, a coordination network has been prepared that exhibits gas-induced transformations between multiple non-porous phases. This phenomenon is attributed to subtle structural rearrangements that enable transient porosity. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/s41557-022-01128-3 |