On-Demand, Reversible, Ultrasensitive Polymer Membrane Based on Molecular Imprinting Polymer

The development of in vivo, longitudinal, real-time monitoring devices is an essential step toward continuous, precision health monitoring. Molecularly imprinted polymers (MIPs) are popular sensor capture agents that are more robust than antibodies and have been used for sensors, drug delivery, affi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-03, Vol.17 (6), p.5632-5643
Hauptverfasser: Mintz Hemed, Nofar, Leal-Ortiz, Sergio, Zhao, Eric T., Melosh, Nicholas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5643
container_issue 6
container_start_page 5632
container_title ACS nano
container_volume 17
creator Mintz Hemed, Nofar
Leal-Ortiz, Sergio
Zhao, Eric T.
Melosh, Nicholas A.
description The development of in vivo, longitudinal, real-time monitoring devices is an essential step toward continuous, precision health monitoring. Molecularly imprinted polymers (MIPs) are popular sensor capture agents that are more robust than antibodies and have been used for sensors, drug delivery, affinity separations, assays, and solid-phase extraction. However, MIP sensors are typically limited to one-time use due to their high binding affinity (>107 M–1) and slow-release kinetics (
doi_str_mv 10.1021/acsnano.2c11618
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10062346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786811172</sourcerecordid><originalsourceid>FETCH-LOGICAL-a430t-4003f6461153f54f0af8270b55ecec4a859f24eb5af1019526f6bb16a5dd7ddf3</originalsourceid><addsrcrecordid>eNp1kc1LxDAQxYMofp-9SY-CVjNtk7Yn8VthZUVc8CCEtJ1olzTRpF3wvzey66IHTxOY37x5k0fIHtBjoAmcyNobaexxUgNwKFbIJpQpj2nBn1eXbwYbZMv7KaUsL3K-TjZSXkJasmyTvIxNfImdNM1R9IgzdL6tNB5FE9076dH4tm9nGD1Y_dmhi-6xq5w0GJ2HZhNZE91bjfWgpYvuunfXmr41rz_4DllTUnvcXdRtMrm-erq4jUfjm7uLs1Ess5T2cUZpqnjGAViqWKaoVEWS04oxrLHOZMFKlWRYMamAQskSrnhVAZesafKmUek2OZ3rvg9Vh02NJpjXItjppPsUVrbib8e0b-LVzgRQypM040HhYKHg7MeAvhdd62vUOtxqBy-SvOAFAORJQE_maO2s9w7Vcg9Q8R2KWIQiFqGEif3f9pb8TwoBOJwDYVJM7eBM-K1_5b4AD8eaCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786811172</pqid></control><display><type>article</type><title>On-Demand, Reversible, Ultrasensitive Polymer Membrane Based on Molecular Imprinting Polymer</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Mintz Hemed, Nofar ; Leal-Ortiz, Sergio ; Zhao, Eric T. ; Melosh, Nicholas A.</creator><creatorcontrib>Mintz Hemed, Nofar ; Leal-Ortiz, Sergio ; Zhao, Eric T. ; Melosh, Nicholas A.</creatorcontrib><description>The development of in vivo, longitudinal, real-time monitoring devices is an essential step toward continuous, precision health monitoring. Molecularly imprinted polymers (MIPs) are popular sensor capture agents that are more robust than antibodies and have been used for sensors, drug delivery, affinity separations, assays, and solid-phase extraction. However, MIP sensors are typically limited to one-time use due to their high binding affinity (&gt;107 M–1) and slow-release kinetics (&lt;10–4 μM/sec). To overcome this challenge, current research has focused on stimuli-responsive MIPs (SR-MIPs), which undergo a conformational change induced by external stimuli to reverse molecular binding, requiring additional chemicals or outside stimuli. Here, we demonstrate fully reversible MIP sensors based on electrostatic repulsion. Once the target analyte is bound within a thin film MIP on an electrode, a small electrical potential successfully releases the bound molecules, enabling repeated, accurate measurements. We demonstrate an electrostatically refreshed dopamine sensor with a 760 pM limit of detection, linear response profile, and accuracy even after 30 sensing–release cycles. These sensors could repeatedly detect &lt;1 nM dopamine released from PC-12 cells in vitro, demonstrating they can longitudinally measure low concentrations in complex biological environments without clogging. Our work provides a simple and effective strategy for enhancing the use of MIPs-based biosensors for all charged molecules in continuous, real-time health monitoring and other sensing applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c11618</identifier><identifier>PMID: 36913954</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; Dopamine ; Electrochemical Techniques ; Molecular Imprinting ; Polymers - chemistry ; Povidone</subject><ispartof>ACS nano, 2023-03, Vol.17 (6), p.5632-5643</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a430t-4003f6461153f54f0af8270b55ecec4a859f24eb5af1019526f6bb16a5dd7ddf3</citedby><cites>FETCH-LOGICAL-a430t-4003f6461153f54f0af8270b55ecec4a859f24eb5af1019526f6bb16a5dd7ddf3</cites><orcidid>0000-0002-8312-5989 ; 0000-0002-2601-1379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c11618$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c11618$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36913954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mintz Hemed, Nofar</creatorcontrib><creatorcontrib>Leal-Ortiz, Sergio</creatorcontrib><creatorcontrib>Zhao, Eric T.</creatorcontrib><creatorcontrib>Melosh, Nicholas A.</creatorcontrib><title>On-Demand, Reversible, Ultrasensitive Polymer Membrane Based on Molecular Imprinting Polymer</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The development of in vivo, longitudinal, real-time monitoring devices is an essential step toward continuous, precision health monitoring. Molecularly imprinted polymers (MIPs) are popular sensor capture agents that are more robust than antibodies and have been used for sensors, drug delivery, affinity separations, assays, and solid-phase extraction. However, MIP sensors are typically limited to one-time use due to their high binding affinity (&gt;107 M–1) and slow-release kinetics (&lt;10–4 μM/sec). To overcome this challenge, current research has focused on stimuli-responsive MIPs (SR-MIPs), which undergo a conformational change induced by external stimuli to reverse molecular binding, requiring additional chemicals or outside stimuli. Here, we demonstrate fully reversible MIP sensors based on electrostatic repulsion. Once the target analyte is bound within a thin film MIP on an electrode, a small electrical potential successfully releases the bound molecules, enabling repeated, accurate measurements. We demonstrate an electrostatically refreshed dopamine sensor with a 760 pM limit of detection, linear response profile, and accuracy even after 30 sensing–release cycles. These sensors could repeatedly detect &lt;1 nM dopamine released from PC-12 cells in vitro, demonstrating they can longitudinally measure low concentrations in complex biological environments without clogging. Our work provides a simple and effective strategy for enhancing the use of MIPs-based biosensors for all charged molecules in continuous, real-time health monitoring and other sensing applications.</description><subject>Biosensing Techniques</subject><subject>Dopamine</subject><subject>Electrochemical Techniques</subject><subject>Molecular Imprinting</subject><subject>Polymers - chemistry</subject><subject>Povidone</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1LxDAQxYMofp-9SY-CVjNtk7Yn8VthZUVc8CCEtJ1olzTRpF3wvzey66IHTxOY37x5k0fIHtBjoAmcyNobaexxUgNwKFbIJpQpj2nBn1eXbwYbZMv7KaUsL3K-TjZSXkJasmyTvIxNfImdNM1R9IgzdL6tNB5FE9076dH4tm9nGD1Y_dmhi-6xq5w0GJ2HZhNZE91bjfWgpYvuunfXmr41rz_4DllTUnvcXdRtMrm-erq4jUfjm7uLs1Ess5T2cUZpqnjGAViqWKaoVEWS04oxrLHOZMFKlWRYMamAQskSrnhVAZesafKmUek2OZ3rvg9Vh02NJpjXItjppPsUVrbib8e0b-LVzgRQypM040HhYKHg7MeAvhdd62vUOtxqBy-SvOAFAORJQE_maO2s9w7Vcg9Q8R2KWIQiFqGEif3f9pb8TwoBOJwDYVJM7eBM-K1_5b4AD8eaCQ</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Mintz Hemed, Nofar</creator><creator>Leal-Ortiz, Sergio</creator><creator>Zhao, Eric T.</creator><creator>Melosh, Nicholas A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8312-5989</orcidid><orcidid>https://orcid.org/0000-0002-2601-1379</orcidid></search><sort><creationdate>20230328</creationdate><title>On-Demand, Reversible, Ultrasensitive Polymer Membrane Based on Molecular Imprinting Polymer</title><author>Mintz Hemed, Nofar ; Leal-Ortiz, Sergio ; Zhao, Eric T. ; Melosh, Nicholas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a430t-4003f6461153f54f0af8270b55ecec4a859f24eb5af1019526f6bb16a5dd7ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosensing Techniques</topic><topic>Dopamine</topic><topic>Electrochemical Techniques</topic><topic>Molecular Imprinting</topic><topic>Polymers - chemistry</topic><topic>Povidone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mintz Hemed, Nofar</creatorcontrib><creatorcontrib>Leal-Ortiz, Sergio</creatorcontrib><creatorcontrib>Zhao, Eric T.</creatorcontrib><creatorcontrib>Melosh, Nicholas A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mintz Hemed, Nofar</au><au>Leal-Ortiz, Sergio</au><au>Zhao, Eric T.</au><au>Melosh, Nicholas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Demand, Reversible, Ultrasensitive Polymer Membrane Based on Molecular Imprinting Polymer</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-03-28</date><risdate>2023</risdate><volume>17</volume><issue>6</issue><spage>5632</spage><epage>5643</epage><pages>5632-5643</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The development of in vivo, longitudinal, real-time monitoring devices is an essential step toward continuous, precision health monitoring. Molecularly imprinted polymers (MIPs) are popular sensor capture agents that are more robust than antibodies and have been used for sensors, drug delivery, affinity separations, assays, and solid-phase extraction. However, MIP sensors are typically limited to one-time use due to their high binding affinity (&gt;107 M–1) and slow-release kinetics (&lt;10–4 μM/sec). To overcome this challenge, current research has focused on stimuli-responsive MIPs (SR-MIPs), which undergo a conformational change induced by external stimuli to reverse molecular binding, requiring additional chemicals or outside stimuli. Here, we demonstrate fully reversible MIP sensors based on electrostatic repulsion. Once the target analyte is bound within a thin film MIP on an electrode, a small electrical potential successfully releases the bound molecules, enabling repeated, accurate measurements. We demonstrate an electrostatically refreshed dopamine sensor with a 760 pM limit of detection, linear response profile, and accuracy even after 30 sensing–release cycles. These sensors could repeatedly detect &lt;1 nM dopamine released from PC-12 cells in vitro, demonstrating they can longitudinally measure low concentrations in complex biological environments without clogging. Our work provides a simple and effective strategy for enhancing the use of MIPs-based biosensors for all charged molecules in continuous, real-time health monitoring and other sensing applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36913954</pmid><doi>10.1021/acsnano.2c11618</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8312-5989</orcidid><orcidid>https://orcid.org/0000-0002-2601-1379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-03, Vol.17 (6), p.5632-5643
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10062346
source MEDLINE; American Chemical Society Publications
subjects Biosensing Techniques
Dopamine
Electrochemical Techniques
Molecular Imprinting
Polymers - chemistry
Povidone
title On-Demand, Reversible, Ultrasensitive Polymer Membrane Based on Molecular Imprinting Polymer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Demand,%20Reversible,%20Ultrasensitive%20Polymer%20Membrane%20Based%20on%20Molecular%20Imprinting%20Polymer&rft.jtitle=ACS%20nano&rft.au=Mintz%20Hemed,%20Nofar&rft.date=2023-03-28&rft.volume=17&rft.issue=6&rft.spage=5632&rft.epage=5643&rft.pages=5632-5643&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c11618&rft_dat=%3Cproquest_pubme%3E2786811172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786811172&rft_id=info:pmid/36913954&rfr_iscdi=true