A random effect regression based on the odd log-logistic generalized inverse Gaussian distribution

In recent decades, the use of regression models with random effects has made great progress. Among these models' attractions is the flexibility to analyze correlated data. In various situations, the distribution of the response variable presents asymmetry or bimodality. In these cases, it is po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2023-04, Vol.50 (5), p.1199-1214
Hauptverfasser: Vasconcelos, J. C. S., Cordeiro, G. M., Ortega, E. M. M., Silva, G. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent decades, the use of regression models with random effects has made great progress. Among these models' attractions is the flexibility to analyze correlated data. In various situations, the distribution of the response variable presents asymmetry or bimodality. In these cases, it is possible to use the normal regression with random effect at the intercept. In light of these contexts, i.e. the desire to analyze correlated data in the presence of bimodality or asymmetry, in this paper we propose a regression model with random effect at the intercept based onthe generalized inverse Gaussian distribution model with correlated data. The maximum likelihood is adopted to estimate the parameters and various simulations are performed for correlated data. A type of residuals for the new regression is proposed whose empirical distribution is close to normal. The versatility of the new regression is demonstrated by estimating the average price per hectare of bare land in 10 municipalities in the state of São Paulo (Brazil). In this context, various databases are constantly emerging, requiring flexible modeling. Thus, it is likely to be of interest to data analysts, and can make a good contribution to the statistical literature.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2021.2024515