Sparse machine learning in Banach spaces

The aim of this expository paper is to explain to graduate students and beginning researchers in the field of mathematics, statistics and engineering the fundamental concept of sparse machine learning in Banach spaces. In particular, we use binary classification as an example to explain the essence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 2023-05, Vol.187, p.138-157
1. Verfasser: Xu, Yuesheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this expository paper is to explain to graduate students and beginning researchers in the field of mathematics, statistics and engineering the fundamental concept of sparse machine learning in Banach spaces. In particular, we use binary classification as an example to explain the essence of learning in a reproducing kernel Hilbert space and sparse learning in a reproducing kernel Banach space (RKBS). We then utilize the Banach space ℓ1(N) to illustrate the basic concepts of the RKBS in an elementary yet rigorous fashion. This paper reviews existing results in the author's perspectives to reflect the state of the art of the field of sparse learning, and includes new theoretical observations on the RKBS. Several open problems critical to the theory of the RKBS are also discussed at the end of this paper.
ISSN:0168-9274
1873-5460
DOI:10.1016/j.apnum.2023.02.011