Immobilization and Release of Platelet-Rich Plasma from Modified Nanofibers Studied by Advanced X-ray Photoelectron Spectroscopy Analyses

Platelet-rich Plasma (PRP) is an ensemble of growth factors, extracellular matrix components, and proteoglycans that are naturally balanced in the human body. In this study, the immobilization and release of PRP component nanofiber surfaces modified by plasma treatment in a gas discharge have been i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-03, Vol.15 (6), p.1440
Hauptverfasser: Manakhov, Anton M, Permyakova, Elizaveta S, Solovieva, Anastasiya O, Sitnikova, Natalya A, Kiryukhantsev-Korneev, Philipp V, Konopatsky, Anton S, Shtansky, Dmitry V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Platelet-rich Plasma (PRP) is an ensemble of growth factors, extracellular matrix components, and proteoglycans that are naturally balanced in the human body. In this study, the immobilization and release of PRP component nanofiber surfaces modified by plasma treatment in a gas discharge have been investigated for the first time. The plasma-treated polycaprolactone (PCL) nanofibers were utilized as substrates for the immobilization of PRP, and the amount of PRP immobilized was assessed by fitting a specific X-ray Photoelectron Spectroscopy (XPS) curve to the elemental composition changes. The release of PRP was then revealed by measuring the XPS after soaking nanofibers containing immobilized PRP in buffers of varying pHs (4.8; 7.4; 8.1). Our investigations have proven that the immobilized PRP would continue to cover approximately fifty percent of the surface after eight days.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15061440