Automatic diagnosis of COVID-19 related respiratory diseases from speech
In this work, an attempt is made to propose an intelligent and automatic system to recognize COVID-19 related illnesses from mere speech samples by using automatic speech processing techniques. We used a standard crowd-sourced dataset which was collected by the University of Cambridge through a web...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2023-09, Vol.82 (23), p.36599-36614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, an attempt is made to propose an intelligent and automatic system to recognize COVID-19 related illnesses from mere speech samples by using automatic speech processing techniques. We used a standard crowd-sourced dataset which was collected by the University of Cambridge through a web based application and an android/iPhone app. We worked on cough and breath datasets individually, and also with a combination of both the datasets. We trained the datasets on two sets of features, one consisting of only standard audio features such as spectral and prosodic features and one combining excitation source features with standard audio features extracted, and trained our model on shallow classifiers such as ensemble classifiers and SVM classification methods. Our model has shown better performance on both breath and cough datasets, but the best results in each of the cases was obtained through different combinations of features and classifiers. We got our best result when we used only standard audio features, and combined both cough and breath data. In this case, we achieved an accuracy of 84% and an Area Under Curve (AUC) score of 84%. Intelligent systems have already started to make a mark in medical diagnosis, and this type of study can help better the health system by providing much needed assistance to the health workers. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-023-14923-y |