Evaluation of piperine analogs against prostate cancer targeting AKT1 kinase domain through network pharmacological analysis
Prostate cancer is the second most fatal malignancy in men after lung cancer, and the fifth leading cause of death. Piperine has been utilized for its therapeutic effects since the time of Ayurveda. According to traditional Chinese medicine, piperine has a wide variety of pharmacological effects, in...
Gespeichert in:
Veröffentlicht in: | In silico pharmacology 2023-03, Vol.11 (1), p.7-7, Article 7 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prostate cancer is the second most fatal malignancy in men after lung cancer, and the fifth leading cause of death. Piperine has been utilized for its therapeutic effects since the time of Ayurveda. According to traditional Chinese medicine, piperine has a wide variety of pharmacological effects, including anti-inflammatory, anti-cancer, and immune-regulating properties. Based on the previous study, Akt1 (protein kinase B) is one of the targets of piperine, it belongs to the group of oncogenes and the mechanism of the Akt1 is an interesting approach for anticancer drug design. From the peer-reviewed literature, five piperine analogs were identified altogether, and a combinatorial collection was formed. However, may not be entirely clear how piperine analogs work to prevent prostate cancer. In the present study, serine-threonine kinase domain Akt1 receptor was employed to analyze the efficacy of piperine analogs against standards using in silico methodologies. Additionally, their drug-likeness was evaluated utilizing online servers like Molinspiration and preADMET. Using AutoDock Vina, the interactions of five piperine analogs and two standards with Akt1 receptor was investigated. Our study reveals that piperine analog-2 (pip2) shows highest binding affinity (
−
6.0 kcal/mol) by forming 6 hydrogen bonds with more hydrophobic interactions compared to other four analogs and standards. In conclusion, the piperine analog pip2, which shows strong inhibition affect in Akt1-cancer pathway, may be employed as chemotherapeutic drugs.
Graphical abstract |
---|---|
ISSN: | 2193-9616 2193-9616 |
DOI: | 10.1007/s40203-023-00145-5 |