Ammi-visnaga extract; a novel phyto-antiviral agent against bovine rotavirus
The spread of bovine rotavirus has a great impact on animal productivity, milk products, and human public health. Thus, this study aimed to develop a novel, effective and accessible Phyto-antiviral treatment made from methanolic Ammi-visnaga seed extract against rotavirus infection. Rotaviruses were...
Gespeichert in:
Veröffentlicht in: | VirusDisease 2023-03, Vol.34 (1), p.76-87 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spread of bovine rotavirus has a great impact on animal productivity, milk products, and human public health. Thus, this study aimed to develop a novel, effective and accessible Phyto-antiviral treatment made from methanolic
Ammi-visnaga
seed extract against rotavirus infection. Rotaviruses were isolated from raw milk and cottage cheese samples randomly collected from Cairo and Qalubia governorates. They were all identified serologically, however, only three of them were both biologically and molecularly confirmed. The methanolic extract derived from Khella seeds (MKSE) was chemically analyzed with mass chromatography. The cellular toxicity of MKSE was tested on Caco-2 cells and its antiviral activity against one of the isolated bovine rotaviruses (BRVM1) was tested by both the cytopathic inhibition assay and the plaque reduction assay. Our results showed that 17.3% of the total collected 150 dairy samples were bovine rotavirus antigen positive. Three representatives of them were phylogenetically identified to be included in group A based on a 379 bp coat protein gene. Visnagin, Benzopyran, Khellin, and Benzenepropanoic acid were the major active components found in the MKSE. The maximum non-toxic concentration of MKSE was 5 µg/mL and the CC
50
value was 417 µg/mL. The MKSE exhibited in-vitro antiviral activity against BRVM1 indicated by inhibition of the viral cytopathic effect (SI = 204.5, IP = 98%), causing a 1.5 log decrease in BVRM1 TCID
50
and reducing the viral plaques count by the percentage of 93.14% at MNTC (5 ug/ml). In conclusion, our study showed that bovine rotavirus represents a severe health problem that needs attention in Egypt, and it supports using MKSE as a potential natural anti-rotavirus agent. |
---|---|
ISSN: | 2347-3584 2347-3517 |
DOI: | 10.1007/s13337-022-00803-w |