Identification of Circular RNA Profiles in the Liver of Diet-Induced Obese Mice and Construction of the ceRNA Network
Obesity is a major risk factor for cardiovascular, cerebrovascular, metabolic, and respiratory diseases, and it has become an important social health problem affecting the health of the population. Obesity is affected by both genetic and environmental factors. In this study, we constructed a diet-in...
Gespeichert in:
Veröffentlicht in: | Genes 2023-03, Vol.14 (3), p.688 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Obesity is a major risk factor for cardiovascular, cerebrovascular, metabolic, and respiratory diseases, and it has become an important social health problem affecting the health of the population. Obesity is affected by both genetic and environmental factors. In this study, we constructed a diet-induced obese C57BL/6J mouse model and performed deep RNA sequencing (RNA-seq) on liner-depleted RNA extracted from the liver tissues of the mice to explore the underlying mechanisms of obesity. A total of 7469 circular RNAs (circRNAs) were detected, and 21 were differentially expressed (DE) in the high-fat diet (HFD) and low-fat diet (LFD) groups. We then constructed a comprehensive circRNA-associated competing endogenous RNA (ceRNA) network. Bioinformatic analysis indicated that DE circRNAs associated with lipid metabolic-related pathways may act as miRNA sponges to modulate target gene expression.
and
may serve as new candidates to regulate the expression of
. This study provides systematic circRNA-associated ceRNA profiling in HFD mouse liver, and the results can aid early diagnosis and the selection of treatment targets for obesity in the future. |
---|---|
ISSN: | 2073-4425 2073-4425 |
DOI: | 10.3390/genes14030688 |