3D Graphene-Nanowire “Sandwich” Thermal Interface with Ultralow Resistance and Stiffness

Despite the recent advancements of passive and active cooling solutions for electronics, interfaces between materials have generally become crucial barriers for thermal transport because of intrinsic material dissimilarity and surface roughness at interfaces. We demonstrate a 3D graphene-nanowire “s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-02, Vol.17 (3), p.2602-2610
Hauptverfasser: Jing, Lin, Cheng, Rui, Garg, Raghav, Gong, Wei, Lee, Inkyu, Schmit, Aaron, Cohen-Karni, Tzahi, Zhang, Xu, Shen, Sheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the recent advancements of passive and active cooling solutions for electronics, interfaces between materials have generally become crucial barriers for thermal transport because of intrinsic material dissimilarity and surface roughness at interfaces. We demonstrate a 3D graphene-nanowire “sandwich” thermal interface that enables an ultralow thermal resistance of ∼0.24 mm2·K/W that is about 1 order of magnitude smaller than those of solders and several orders of magnitude lower than those of thermal greases, gels, and epoxies, as well as a low elastic and shear moduli of ∼1 MPa like polymers and foams. The flexible 3D “sandwich” exhibits excellent long-term reliability with >1000 cycles over a broad temperature range from −55 °C to 125 °C. This nanostructured thermal interface material can greatly benefit a variety of electronic systems and devices by allowing them to operate at lower temperatures or at the same temperature but with higher performance and higher power density.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c10525