Deep Learning for Explainable Estimation of Mortality Risk From Myocardial Positron Emission Tomography Images
We aim to develop an explainable deep learning (DL) network for the prediction of all-cause mortality directly from positron emission tomography myocardial perfusion imaging flow and perfusion polar map data and evaluate it using prospective testing. A total of 4735 consecutive patients referred for...
Gespeichert in:
Veröffentlicht in: | Circulation. Cardiovascular imaging 2022-09, Vol.15 (9), p.e014526-e014526 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We aim to develop an explainable deep learning (DL) network for the prediction of all-cause mortality directly from positron emission tomography myocardial perfusion imaging flow and perfusion polar map data and evaluate it using prospective testing.
A total of 4735 consecutive patients referred for stress and rest
Rb positron emission tomography between 2010 and 2018 were followed up for all-cause mortality for 4.15 (2.24-6.3) years. DL network utilized polar maps of stress and rest perfusion, myocardial blood flow, myocardial flow reserve, and spill-over fraction combined with cardiac volumes, singular indices, and sex. Patients scanned from 2010 to 2016 were used for training and validation. The network was tested in a set of 1135 patients scanned from 2017 to 2018 to simulate prospective clinical implementation.
In prospective testing, the area under the receiver operating characteristic curve for all-cause mortality prediction by DL (0.82 [95% CI, 0.77-0.86]) was higher than ischemia (0.60 [95% CI, 0.54-0.66]; |
---|---|
ISSN: | 1942-0080 1941-9651 1942-0080 |
DOI: | 10.1161/CIRCIMAGING.122.014526 |