Deep Learning for Explainable Estimation of Mortality Risk From Myocardial Positron Emission Tomography Images

We aim to develop an explainable deep learning (DL) network for the prediction of all-cause mortality directly from positron emission tomography myocardial perfusion imaging flow and perfusion polar map data and evaluate it using prospective testing. A total of 4735 consecutive patients referred for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation. Cardiovascular imaging 2022-09, Vol.15 (9), p.e014526-e014526
Hauptverfasser: Singh, Ananya, Kwiecinski, Jacek, Miller, Robert J.H., Otaki, Yuka, Kavanagh, Paul B., Van Kriekinge, Serge D., Parekh, Tejas, Gransar, Heidi, Pieszko, Konrad, Killekar, Aditya, Tummala, Ramyashree, Liang, Joanna X., Di Carli, Marcelo F., Berman, Daniel S., Dey, Damini, Slomka, Piotr J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We aim to develop an explainable deep learning (DL) network for the prediction of all-cause mortality directly from positron emission tomography myocardial perfusion imaging flow and perfusion polar map data and evaluate it using prospective testing. A total of 4735 consecutive patients referred for stress and rest Rb positron emission tomography between 2010 and 2018 were followed up for all-cause mortality for 4.15 (2.24-6.3) years. DL network utilized polar maps of stress and rest perfusion, myocardial blood flow, myocardial flow reserve, and spill-over fraction combined with cardiac volumes, singular indices, and sex. Patients scanned from 2010 to 2016 were used for training and validation. The network was tested in a set of 1135 patients scanned from 2017 to 2018 to simulate prospective clinical implementation. In prospective testing, the area under the receiver operating characteristic curve for all-cause mortality prediction by DL (0.82 [95% CI, 0.77-0.86]) was higher than ischemia (0.60 [95% CI, 0.54-0.66];
ISSN:1942-0080
1941-9651
1942-0080
DOI:10.1161/CIRCIMAGING.122.014526