Topology and replication of a nuclear episomal plasmid in the rodent malaria Plasmodium berghei

The rodent malaria Plasmodium berghei is one of a small number of species of Plasmodium that can currently be genetically transformed through experimentally controlled uptake of exogenous DNA by bloodstage parasites. Circular DNA containing a selectable marker replicates and is maintained under sele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2002-02, Vol.30 (3), p.726-731
Hauptverfasser: Williamson, Donald H, Janse, Chris J, Moore, Peter W, Waters, Andrew P, Preiser, Peter R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rodent malaria Plasmodium berghei is one of a small number of species of Plasmodium that can currently be genetically transformed through experimentally controlled uptake of exogenous DNA by bloodstage parasites. Circular DNA containing a selectable marker replicates and is maintained under selection pressure in a randomly segregating episomal form during the first weeks after transformation. In this study, using pulsed field gel electrophoresis and ionising radiation, we show that in dividing asexual blood stage parasites the episomes are completely converted, within 2 weeks post-infection, into non-rearranged circular concatamers ranging in size between about 9 and 15 copies of the monomer. These occur as slow-moving aggregates held together by radiation-sensitive linkers consisting partly of single-stranded DNA. The process generating these complexes is not clear but 2D gel analysis showed that Cairns-type replication origins were absent and it seems most likely that the initial concatamerisation takes place using a rolling circle mechanism followed by circularisation through internal recombination. We propose a model in which continued rolling circle replication of the large circular concatamers and the recombinational activity of the tails of the rolling circles could lead to the formation of the large aggregates.
ISSN:1362-4962
0305-1048
1362-4962
DOI:10.1093/nar/30.3.726