Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions
Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric s...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2023-03, Vol.14 (3), p.1041-1053 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1053 |
---|---|
container_issue | 3 |
container_start_page | 1041 |
container_title | Biomedical optics express |
container_volume | 14 |
creator | Nizam, Navid Ibtehaj Ochoa, Marien Smith, Jason T Intes, Xavier |
description | Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric solving of an ill-posed inverse problem. Deep learning (DL) models have been recently proposed to facilitate this challenging step. Herein, we expand on a previously reported deep neural network (DNN) -based architecture (modified AUTOMAP - ModAM) for accurate and fast reconstructions of the absorption coefficient in 3D DOT based on a structured light illumination and detection scheme. Furthermore, we evaluate the improved performances when incorporating a micro-CT structural prior in the DNN-based workflow, named Z-AUTOMAP. This Z-AUTOMAP significantly improves the widefield imaging process's spatial resolution, especially in the transverse direction. The reported DL-based strategies are validated both
and in experimental phantom studies using spectral micro-CT priors. Overall, this is the first successful demonstration of micro-CT and DOT fusion using deep learning, greatly enhancing the prospect of rapid data-integration strategies, often demanded in challenging pre-clinical scenarios. |
doi_str_mv | 10.1364/BOE.480091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10026582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790047833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-8a121f76acbf760d893cc2b694b1652cc8b91f038d26fe008d9b453c1130e9193</originalsourceid><addsrcrecordid>eNpVkUtLBiEUhiWKimrTDwiXEUx5mYuuor6uELSptTh6_DJmxklnipb984yvolyoHB_e83pehPYpOaa8Lk_O7y-PS0GIpGtom9GqLhoiqvU_9y20l9IzyassG8LFJtritawIK8U2-rgAGHEHOg5-WBatTmCxm5MPAw4Ov3kLzkNnsfUulwGHcfJGd3gKfVhGPT69Yz1Y3HsTQ7F4wGmKs5nmmJEx-hATdiFibUwuTYD5BY5gwrDCcpe0izac7hLsfZ876PHq8mFxU9zdX98uzu4Kwxs5FUJTRl1Ta9PmnVghuTGsrWXZ0rpixohWUpe_Z1ntgBBhZVtW3FDKCUgq-Q46XemOc9uDNTBM2aTKJnsd31XQXv1_GfyTWoZXRQlhdSVYVjj8VojhZYY0qd4nA12nBwhzUqyRecaN4DyjRys0TyWlCO63DyXqKzeVc1Or3DJ88NfZL_qTEv8EtIiVnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790047833</pqid></control><display><type>article</type><title>Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nizam, Navid Ibtehaj ; Ochoa, Marien ; Smith, Jason T ; Intes, Xavier</creator><creatorcontrib>Nizam, Navid Ibtehaj ; Ochoa, Marien ; Smith, Jason T ; Intes, Xavier</creatorcontrib><description>Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric solving of an ill-posed inverse problem. Deep learning (DL) models have been recently proposed to facilitate this challenging step. Herein, we expand on a previously reported deep neural network (DNN) -based architecture (modified AUTOMAP - ModAM) for accurate and fast reconstructions of the absorption coefficient in 3D DOT based on a structured light illumination and detection scheme. Furthermore, we evaluate the improved performances when incorporating a micro-CT structural prior in the DNN-based workflow, named Z-AUTOMAP. This Z-AUTOMAP significantly improves the widefield imaging process's spatial resolution, especially in the transverse direction. The reported DL-based strategies are validated both
and in experimental phantom studies using spectral micro-CT priors. Overall, this is the first successful demonstration of micro-CT and DOT fusion using deep learning, greatly enhancing the prospect of rapid data-integration strategies, often demanded in challenging pre-clinical scenarios.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.480091</identifier><identifier>PMID: 36950248</identifier><language>eng</language><publisher>United States: Optica Publishing Group</publisher><ispartof>Biomedical optics express, 2023-03, Vol.14 (3), p.1041-1053</ispartof><rights>2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.</rights><rights>2023 Optica Publishing Group under the terms of the 2023 Optica Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-8a121f76acbf760d893cc2b694b1652cc8b91f038d26fe008d9b453c1130e9193</citedby><cites>FETCH-LOGICAL-c379t-8a121f76acbf760d893cc2b694b1652cc8b91f038d26fe008d9b453c1130e9193</cites><orcidid>0000-0002-8266-5254 ; 0000-0001-6427-4447 ; 0000-0001-6675-5252 ; 0000-0001-5868-4845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026582/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026582/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36950248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nizam, Navid Ibtehaj</creatorcontrib><creatorcontrib>Ochoa, Marien</creatorcontrib><creatorcontrib>Smith, Jason T</creatorcontrib><creatorcontrib>Intes, Xavier</creatorcontrib><title>Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric solving of an ill-posed inverse problem. Deep learning (DL) models have been recently proposed to facilitate this challenging step. Herein, we expand on a previously reported deep neural network (DNN) -based architecture (modified AUTOMAP - ModAM) for accurate and fast reconstructions of the absorption coefficient in 3D DOT based on a structured light illumination and detection scheme. Furthermore, we evaluate the improved performances when incorporating a micro-CT structural prior in the DNN-based workflow, named Z-AUTOMAP. This Z-AUTOMAP significantly improves the widefield imaging process's spatial resolution, especially in the transverse direction. The reported DL-based strategies are validated both
and in experimental phantom studies using spectral micro-CT priors. Overall, this is the first successful demonstration of micro-CT and DOT fusion using deep learning, greatly enhancing the prospect of rapid data-integration strategies, often demanded in challenging pre-clinical scenarios.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkUtLBiEUhiWKimrTDwiXEUx5mYuuor6uELSptTh6_DJmxklnipb984yvolyoHB_e83pehPYpOaa8Lk_O7y-PS0GIpGtom9GqLhoiqvU_9y20l9IzyassG8LFJtritawIK8U2-rgAGHEHOg5-WBatTmCxm5MPAw4Ov3kLzkNnsfUulwGHcfJGd3gKfVhGPT69Yz1Y3HsTQ7F4wGmKs5nmmJEx-hATdiFibUwuTYD5BY5gwrDCcpe0izac7hLsfZ876PHq8mFxU9zdX98uzu4Kwxs5FUJTRl1Ta9PmnVghuTGsrWXZ0rpixohWUpe_Z1ntgBBhZVtW3FDKCUgq-Q46XemOc9uDNTBM2aTKJnsd31XQXv1_GfyTWoZXRQlhdSVYVjj8VojhZYY0qd4nA12nBwhzUqyRecaN4DyjRys0TyWlCO63DyXqKzeVc1Or3DJ88NfZL_qTEv8EtIiVnw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Nizam, Navid Ibtehaj</creator><creator>Ochoa, Marien</creator><creator>Smith, Jason T</creator><creator>Intes, Xavier</creator><general>Optica Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8266-5254</orcidid><orcidid>https://orcid.org/0000-0001-6427-4447</orcidid><orcidid>https://orcid.org/0000-0001-6675-5252</orcidid><orcidid>https://orcid.org/0000-0001-5868-4845</orcidid></search><sort><creationdate>20230301</creationdate><title>Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions</title><author>Nizam, Navid Ibtehaj ; Ochoa, Marien ; Smith, Jason T ; Intes, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-8a121f76acbf760d893cc2b694b1652cc8b91f038d26fe008d9b453c1130e9193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nizam, Navid Ibtehaj</creatorcontrib><creatorcontrib>Ochoa, Marien</creatorcontrib><creatorcontrib>Smith, Jason T</creatorcontrib><creatorcontrib>Intes, Xavier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nizam, Navid Ibtehaj</au><au>Ochoa, Marien</au><au>Smith, Jason T</au><au>Intes, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>14</volume><issue>3</issue><spage>1041</spage><epage>1053</epage><pages>1041-1053</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric solving of an ill-posed inverse problem. Deep learning (DL) models have been recently proposed to facilitate this challenging step. Herein, we expand on a previously reported deep neural network (DNN) -based architecture (modified AUTOMAP - ModAM) for accurate and fast reconstructions of the absorption coefficient in 3D DOT based on a structured light illumination and detection scheme. Furthermore, we evaluate the improved performances when incorporating a micro-CT structural prior in the DNN-based workflow, named Z-AUTOMAP. This Z-AUTOMAP significantly improves the widefield imaging process's spatial resolution, especially in the transverse direction. The reported DL-based strategies are validated both
and in experimental phantom studies using spectral micro-CT priors. Overall, this is the first successful demonstration of micro-CT and DOT fusion using deep learning, greatly enhancing the prospect of rapid data-integration strategies, often demanded in challenging pre-clinical scenarios.</abstract><cop>United States</cop><pub>Optica Publishing Group</pub><pmid>36950248</pmid><doi>10.1364/BOE.480091</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8266-5254</orcidid><orcidid>https://orcid.org/0000-0001-6427-4447</orcidid><orcidid>https://orcid.org/0000-0001-6675-5252</orcidid><orcidid>https://orcid.org/0000-0001-5868-4845</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-7085 |
ispartof | Biomedical optics express, 2023-03, Vol.14 (3), p.1041-1053 |
issn | 2156-7085 2156-7085 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10026582 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20fusion%20of%20widefield%20diffuse%20optical%20tomography%20and%20micro-CT%20structural%20priors%20for%20accurate%203D%20reconstructions&rft.jtitle=Biomedical%20optics%20express&rft.au=Nizam,%20Navid%20Ibtehaj&rft.date=2023-03-01&rft.volume=14&rft.issue=3&rft.spage=1041&rft.epage=1053&rft.pages=1041-1053&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.480091&rft_dat=%3Cproquest_pubme%3E2790047833%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790047833&rft_id=info:pmid/36950248&rfr_iscdi=true |