Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions

Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2023-03, Vol.14 (3), p.1041-1053
Hauptverfasser: Nizam, Navid Ibtehaj, Ochoa, Marien, Smith, Jason T, Intes, Xavier
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1053
container_issue 3
container_start_page 1041
container_title Biomedical optics express
container_volume 14
creator Nizam, Navid Ibtehaj
Ochoa, Marien
Smith, Jason T
Intes, Xavier
description Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric solving of an ill-posed inverse problem. Deep learning (DL) models have been recently proposed to facilitate this challenging step. Herein, we expand on a previously reported deep neural network (DNN) -based architecture (modified AUTOMAP - ModAM) for accurate and fast reconstructions of the absorption coefficient in 3D DOT based on a structured light illumination and detection scheme. Furthermore, we evaluate the improved performances when incorporating a micro-CT structural prior in the DNN-based workflow, named Z-AUTOMAP. This Z-AUTOMAP significantly improves the widefield imaging process's spatial resolution, especially in the transverse direction. The reported DL-based strategies are validated both and in experimental phantom studies using spectral micro-CT priors. Overall, this is the first successful demonstration of micro-CT and DOT fusion using deep learning, greatly enhancing the prospect of rapid data-integration strategies, often demanded in challenging pre-clinical scenarios.
doi_str_mv 10.1364/BOE.480091
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10026582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790047833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-8a121f76acbf760d893cc2b694b1652cc8b91f038d26fe008d9b453c1130e9193</originalsourceid><addsrcrecordid>eNpVkUtLBiEUhiWKimrTDwiXEUx5mYuuor6uELSptTh6_DJmxklnipb984yvolyoHB_e83pehPYpOaa8Lk_O7y-PS0GIpGtom9GqLhoiqvU_9y20l9IzyassG8LFJtritawIK8U2-rgAGHEHOg5-WBatTmCxm5MPAw4Ov3kLzkNnsfUulwGHcfJGd3gKfVhGPT69Yz1Y3HsTQ7F4wGmKs5nmmJEx-hATdiFibUwuTYD5BY5gwrDCcpe0izac7hLsfZ876PHq8mFxU9zdX98uzu4Kwxs5FUJTRl1Ta9PmnVghuTGsrWXZ0rpixohWUpe_Z1ntgBBhZVtW3FDKCUgq-Q46XemOc9uDNTBM2aTKJnsd31XQXv1_GfyTWoZXRQlhdSVYVjj8VojhZYY0qd4nA12nBwhzUqyRecaN4DyjRys0TyWlCO63DyXqKzeVc1Or3DJ88NfZL_qTEv8EtIiVnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790047833</pqid></control><display><type>article</type><title>Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nizam, Navid Ibtehaj ; Ochoa, Marien ; Smith, Jason T ; Intes, Xavier</creator><creatorcontrib>Nizam, Navid Ibtehaj ; Ochoa, Marien ; Smith, Jason T ; Intes, Xavier</creatorcontrib><description>Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric solving of an ill-posed inverse problem. Deep learning (DL) models have been recently proposed to facilitate this challenging step. Herein, we expand on a previously reported deep neural network (DNN) -based architecture (modified AUTOMAP - ModAM) for accurate and fast reconstructions of the absorption coefficient in 3D DOT based on a structured light illumination and detection scheme. Furthermore, we evaluate the improved performances when incorporating a micro-CT structural prior in the DNN-based workflow, named Z-AUTOMAP. This Z-AUTOMAP significantly improves the widefield imaging process's spatial resolution, especially in the transverse direction. The reported DL-based strategies are validated both and in experimental phantom studies using spectral micro-CT priors. Overall, this is the first successful demonstration of micro-CT and DOT fusion using deep learning, greatly enhancing the prospect of rapid data-integration strategies, often demanded in challenging pre-clinical scenarios.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.480091</identifier><identifier>PMID: 36950248</identifier><language>eng</language><publisher>United States: Optica Publishing Group</publisher><ispartof>Biomedical optics express, 2023-03, Vol.14 (3), p.1041-1053</ispartof><rights>2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.</rights><rights>2023 Optica Publishing Group under the terms of the 2023 Optica Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-8a121f76acbf760d893cc2b694b1652cc8b91f038d26fe008d9b453c1130e9193</citedby><cites>FETCH-LOGICAL-c379t-8a121f76acbf760d893cc2b694b1652cc8b91f038d26fe008d9b453c1130e9193</cites><orcidid>0000-0002-8266-5254 ; 0000-0001-6427-4447 ; 0000-0001-6675-5252 ; 0000-0001-5868-4845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026582/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026582/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36950248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nizam, Navid Ibtehaj</creatorcontrib><creatorcontrib>Ochoa, Marien</creatorcontrib><creatorcontrib>Smith, Jason T</creatorcontrib><creatorcontrib>Intes, Xavier</creatorcontrib><title>Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric solving of an ill-posed inverse problem. Deep learning (DL) models have been recently proposed to facilitate this challenging step. Herein, we expand on a previously reported deep neural network (DNN) -based architecture (modified AUTOMAP - ModAM) for accurate and fast reconstructions of the absorption coefficient in 3D DOT based on a structured light illumination and detection scheme. Furthermore, we evaluate the improved performances when incorporating a micro-CT structural prior in the DNN-based workflow, named Z-AUTOMAP. This Z-AUTOMAP significantly improves the widefield imaging process's spatial resolution, especially in the transverse direction. The reported DL-based strategies are validated both and in experimental phantom studies using spectral micro-CT priors. Overall, this is the first successful demonstration of micro-CT and DOT fusion using deep learning, greatly enhancing the prospect of rapid data-integration strategies, often demanded in challenging pre-clinical scenarios.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkUtLBiEUhiWKimrTDwiXEUx5mYuuor6uELSptTh6_DJmxklnipb984yvolyoHB_e83pehPYpOaa8Lk_O7y-PS0GIpGtom9GqLhoiqvU_9y20l9IzyassG8LFJtritawIK8U2-rgAGHEHOg5-WBatTmCxm5MPAw4Ov3kLzkNnsfUulwGHcfJGd3gKfVhGPT69Yz1Y3HsTQ7F4wGmKs5nmmJEx-hATdiFibUwuTYD5BY5gwrDCcpe0izac7hLsfZ876PHq8mFxU9zdX98uzu4Kwxs5FUJTRl1Ta9PmnVghuTGsrWXZ0rpixohWUpe_Z1ntgBBhZVtW3FDKCUgq-Q46XemOc9uDNTBM2aTKJnsd31XQXv1_GfyTWoZXRQlhdSVYVjj8VojhZYY0qd4nA12nBwhzUqyRecaN4DyjRys0TyWlCO63DyXqKzeVc1Or3DJ88NfZL_qTEv8EtIiVnw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Nizam, Navid Ibtehaj</creator><creator>Ochoa, Marien</creator><creator>Smith, Jason T</creator><creator>Intes, Xavier</creator><general>Optica Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8266-5254</orcidid><orcidid>https://orcid.org/0000-0001-6427-4447</orcidid><orcidid>https://orcid.org/0000-0001-6675-5252</orcidid><orcidid>https://orcid.org/0000-0001-5868-4845</orcidid></search><sort><creationdate>20230301</creationdate><title>Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions</title><author>Nizam, Navid Ibtehaj ; Ochoa, Marien ; Smith, Jason T ; Intes, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-8a121f76acbf760d893cc2b694b1652cc8b91f038d26fe008d9b453c1130e9193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nizam, Navid Ibtehaj</creatorcontrib><creatorcontrib>Ochoa, Marien</creatorcontrib><creatorcontrib>Smith, Jason T</creatorcontrib><creatorcontrib>Intes, Xavier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nizam, Navid Ibtehaj</au><au>Ochoa, Marien</au><au>Smith, Jason T</au><au>Intes, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>14</volume><issue>3</issue><spage>1041</spage><epage>1053</epage><pages>1041-1053</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric solving of an ill-posed inverse problem. Deep learning (DL) models have been recently proposed to facilitate this challenging step. Herein, we expand on a previously reported deep neural network (DNN) -based architecture (modified AUTOMAP - ModAM) for accurate and fast reconstructions of the absorption coefficient in 3D DOT based on a structured light illumination and detection scheme. Furthermore, we evaluate the improved performances when incorporating a micro-CT structural prior in the DNN-based workflow, named Z-AUTOMAP. This Z-AUTOMAP significantly improves the widefield imaging process's spatial resolution, especially in the transverse direction. The reported DL-based strategies are validated both and in experimental phantom studies using spectral micro-CT priors. Overall, this is the first successful demonstration of micro-CT and DOT fusion using deep learning, greatly enhancing the prospect of rapid data-integration strategies, often demanded in challenging pre-clinical scenarios.</abstract><cop>United States</cop><pub>Optica Publishing Group</pub><pmid>36950248</pmid><doi>10.1364/BOE.480091</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8266-5254</orcidid><orcidid>https://orcid.org/0000-0001-6427-4447</orcidid><orcidid>https://orcid.org/0000-0001-6675-5252</orcidid><orcidid>https://orcid.org/0000-0001-5868-4845</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2023-03, Vol.14 (3), p.1041-1053
issn 2156-7085
2156-7085
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10026582
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20fusion%20of%20widefield%20diffuse%20optical%20tomography%20and%20micro-CT%20structural%20priors%20for%20accurate%203D%20reconstructions&rft.jtitle=Biomedical%20optics%20express&rft.au=Nizam,%20Navid%20Ibtehaj&rft.date=2023-03-01&rft.volume=14&rft.issue=3&rft.spage=1041&rft.epage=1053&rft.pages=1041-1053&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.480091&rft_dat=%3Cproquest_pubme%3E2790047833%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790047833&rft_id=info:pmid/36950248&rfr_iscdi=true