Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions

Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2023-03, Vol.14 (3), p.1041-1053
Hauptverfasser: Nizam, Navid Ibtehaj, Ochoa, Marien, Smith, Jason T, Intes, Xavier
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Widefield illumination and detection strategies leveraging structured light have enabled fast and robust probing of tissue properties over large surface areas and volumes. However, when applied to diffuse optical tomography (DOT) applications, they still require a time-consuming and expert-centric solving of an ill-posed inverse problem. Deep learning (DL) models have been recently proposed to facilitate this challenging step. Herein, we expand on a previously reported deep neural network (DNN) -based architecture (modified AUTOMAP - ModAM) for accurate and fast reconstructions of the absorption coefficient in 3D DOT based on a structured light illumination and detection scheme. Furthermore, we evaluate the improved performances when incorporating a micro-CT structural prior in the DNN-based workflow, named Z-AUTOMAP. This Z-AUTOMAP significantly improves the widefield imaging process's spatial resolution, especially in the transverse direction. The reported DL-based strategies are validated both and in experimental phantom studies using spectral micro-CT priors. Overall, this is the first successful demonstration of micro-CT and DOT fusion using deep learning, greatly enhancing the prospect of rapid data-integration strategies, often demanded in challenging pre-clinical scenarios.
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.480091