Radiation prevents tumor progression by inhibiting the miR‑93‑5p/EphA4/NF‑κB pathway in triple‑negative breast cancer
Breast cancer (BC) is the most common type of cancer in women. Triple‑negative BC (TNBC) constitutes 10‑15% of all BC cases and is associated with a poor prognosis. It has previously been reported that microRNA (miR)‑93‑5p is dysregulated in plasma exosomes from patients with BC and that miR‑93‑5p i...
Gespeichert in:
Veröffentlicht in: | Oncology reports 2023-04, Vol.49 (4), Article 78 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast cancer (BC) is the most common type of cancer in women. Triple‑negative BC (TNBC) constitutes 10‑15% of all BC cases and is associated with a poor prognosis. It has previously been reported that microRNA (miR)‑93‑5p is dysregulated in plasma exosomes from patients with BC and that miR‑93‑5p improves radiosensitivity in BC cells. The present study identified EphA4 as a potential target gene of miR‑93‑5p and investigated the pathway related to miR‑93‑5p in TNBC. Cell transfection and nude mouse experiments were performed to verify the role of the miR‑93‑5p/EphA4/NF‑κB pathway. Moreover, miR‑93‑5p, EphA4 and NF‑κB were detected in clinical patients. The results revealed that EphA4 and NF‑κB were downregulated in the miR‑93‑5p overexpression group. By contrast, EphA4 and NF‑κB expression levels were not significantly altered in the miR‑93‑5p overexpression + radiation group compared with those in the radiation group. Furthermore, overexpression of miR‑93‑5p with concomitant radiation therapy significantly decreased the growth of TNBC tumors
. In conclusion, the present study revealed that miR‑93‑5p targeted EphA4 in TNBC through the NF‑κB pathway. However, radiation therapy prevented tumor progression by inhibiting the miR‑93‑5p/EphA4/NF‑κB pathway. Therefore, it would be interesting to elucidate the role of miR‑93‑5p in clinical research. |
---|---|
ISSN: | 1021-335X 1791-2431 1791-2431 |
DOI: | 10.3892/or.2023.8515 |