Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases
Identification of therapeutic targets from genome-wide association studies (GWAS) requires insights into downstream functional consequences. We harmonized 8,613 RNA-sequencing samples from 14 brain datasets to create the MetaBrain resource and performed cis - and trans -expression quantitative trait...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2023-03, Vol.55 (3), p.377-388 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Identification of therapeutic targets from genome-wide association studies (GWAS) requires insights into downstream functional consequences. We harmonized 8,613 RNA-sequencing samples from 14 brain datasets to create the MetaBrain resource and performed
cis
- and
trans
-expression quantitative trait locus (eQTL) meta-analyses in multiple brain region- and ancestry-specific datasets (
n
≤ 2,759). Many of the 16,169 cortex
cis
-eQTLs were tissue-dependent when compared with blood
cis
-eQTLs. We inferred brain cell types for 3,549
cis
-eQTLs by interaction analysis. We prioritized 186
cis
-eQTLs for 31 brain-related traits using Mendelian randomization and co-localization including 40
cis
-eQTLs with an inferred cell type, such as a neuron-specific
cis
-eQTL (
CYP24A1
) for multiple sclerosis. We further describe 737
trans
-eQTLs for 526 unique variants and 108 unique genes. We used brain-specific gene-co-regulation networks to link GWAS loci and prioritize additional genes for five central nervous system diseases. This study represents a valuable resource for post-GWAS research on central nervous system diseases.
Brain expression quantitative trait locus (eQTL) and network analyses encompassing 8,613 RNA-sequencing samples from 14 eQTL datasets reveal downstream effects and putative drivers for brain-related diseases. |
---|---|
ISSN: | 1061-4036 1546-1718 |
DOI: | 10.1038/s41588-023-01300-6 |