A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2022-12, Vol.19 (12), p.1599-1611
Hauptverfasser: Li, Zilin, Li, Xihao, Zhou, Hufeng, Gaynor, Sheila M., Selvaraj, Margaret Sunitha, Arapoglou, Theodore, Quick, Corbin, Liu, Yaowu, Chen, Han, Sun, Ryan, Dey, Rounak, Arnett, Donna K., Auer, Paul L., Bielak, Lawrence F., Bis, Joshua C., Blackwell, Thomas W., Blangero, John, Boerwinkle, Eric, Bowden, Donald W., Brody, Jennifer A., Cade, Brian E., Conomos, Matthew P., Correa, Adolfo, Cupples, L. Adrienne, Curran, Joanne E., de Vries, Paul S., Duggirala, Ravindranath, Franceschini, Nora, Freedman, Barry I., Göring, Harald H. H., Guo, Xiuqing, Kalyani, Rita R., Kooperberg, Charles, Kral, Brian G., Lange, Leslie A., Lin, Bridget M., Manichaikul, Ani, Manning, Alisa K., Martin, Lisa W., Mathias, Rasika A., Meigs, James B., Mitchell, Braxton D., Montasser, May E., Morrison, Alanna C., Naseri, Take, O’Connell, Jeffrey R., Palmer, Nicholette D., Peyser, Patricia A., Psaty, Bruce M., Raffield, Laura M., Redline, Susan, Reiner, Alexander P., Reupena, Muagututi’a Sefuiva, Rice, Kenneth M., Rich, Stephen S., Smith, Jennifer A., Taylor, Kent D., Taub, Margaret A., Vasan, Ramachandran S., Weeks, Daniel E., Wilson, James G., Yanek, Lisa R., Zhao, Wei, Rotter, Jerome I., Willer, Cristen J., Natarajan, Pradeep, Peloso, Gina M., Lin, Xihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits. STAARpipeline is a comprehensive framework for flexible and scalable rare-variant association analysis using whole-genome sequencing data and annotation information.
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-022-01640-x