Assessment of Water Eutrophication at Bao'an Lake in the Middle Reaches of the Yangtze River Based on Multiple Methods
Based on the monthly monitoring of Bao'an Lake in Hubei Province from 2018 to 2020, the eutrophication level of Bao'an Lake in the middle reaches of the Yangtze River is investigated using the comprehensive trophic level index (TLI), chromophoric dissolved organic matter (CDOM) absorption...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2023-03, Vol.20 (5), p.4615 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the monthly monitoring of Bao'an Lake in Hubei Province from 2018 to 2020, the eutrophication level of Bao'an Lake in the middle reaches of the Yangtze River is investigated using the comprehensive trophic level index (TLI), chromophoric dissolved organic matter (CDOM) absorption coefficient, and the phytoplankton water quality biological method. The influencing factors are then identified. The results demonstrate that the overall water quality of Bao'an Lake remained at levels III-V during 2018-2020. Due to different eutrophication assessment methods, the results are different, but all show that Bao'an Lake is in a eutrophication state as a whole. The eutrophication level of Bao'an Lake is observed to vary with time, exhibiting an increasing then decreasing trend between 2018-2020, while levels are high in summer and autumn, and low in winter and spring. Moreover, the eutrophication level of Bao'an Lake presents an obviously varying spatial distribution.
is the dominant species of the Bao'an Lake, the water quality is good in spring when
vigorously grows, but poor in summer and autumn. The permanganate index (COD
) and total phosphorous (TP), total nitrogen (TN), and chlorophyll a (Chl-a) contents are identified as the main influencing factors of the eutrophication level of Bao'an Lake, with a significant relationship observed between Chl-a and TP (
< 0.01). The above results provide a solid theoretical basis for the ecological restoration of Bao'an Lake. |
---|---|
ISSN: | 1660-4601 1661-7827 1660-4601 |
DOI: | 10.3390/ijerph20054615 |