Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase

Lysenin, a hemolytic protein derived from the earthworm Eisenia foetida, has a high affinity for sphingomyelin. Chinese hamster ovary (CHO) cells exhibited a high cytolytic sensitivity to lysenin, but treatment with sphingomyelinase rendered the cells resistant to lysenin. Temperature-sensitive CHO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-12, Vol.273 (50), p.33787
Hauptverfasser: Hanada, K, Hara, T, Fukasawa, M, Yamaji, A, Umeda, M, Nishijima, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lysenin, a hemolytic protein derived from the earthworm Eisenia foetida, has a high affinity for sphingomyelin. Chinese hamster ovary (CHO) cells exhibited a high cytolytic sensitivity to lysenin, but treatment with sphingomyelinase rendered the cells resistant to lysenin. Temperature-sensitive CHO mutant cells defective in sphingolipid synthesis were resistant to lysenin, and this lysenin resistance was suppressed by metabolic complementation of sphingolipids. Selection of lysenin-resistant variants from mutagenized CHO cells yielded two types of sphingomyelin-deficient mutants, both of which showed less lysenin binding capability than wild-type cells. One mutant strain was severely defective in sphingomyelin synthesis but not glycosphingolipid synthesis, and another strain (designated LY-B) was incapable of de novo synthesis of any sphingolipid species and had no activity of serine palmitoyltransferase (SPT; EC 2.3.1.50) catalyzing the first step of sphingolipid biosynthesis. LY-B cells lacked the LCB1 protein, a component of SPT, and transfection of LY-B cells with the hamster LCB1 cDNA restored both SPT activity and sphingolipid synthesis to the cells. Expression of an affinity peptide-tagged LCB1 protein in LY-B cells caused the endogenous LCB2 protein to adsorb to a tag affinity matrix. In addition, an anti-hamster LCB2 protein antibody co-immunoprecipitated both SPT activity and the wild-type LCB1 protein with the LCB2 protein. Thus, cell surface sphingomyelin is essential for lysenin-induced cytolysis, and lysenin is a useful tool for isolation of sphingomyelin-deficient mutants. Moreover, these results demonstrate that the SPT enzyme comprises both the LCB1 and LCB2 proteins.
ISSN:0021-9258
DOI:10.1074/jbc.273.50.33787