Circadian clock function in isolated eyestalk tissue of crayfish
Electrical mass response of crayfish photoreceptors (electroretinogram) was recorded continuously for up to seven days in isolated preparations that consisted of the retina and lamina ganglionaris. Electroretinogram amplitude varied in a circadian manner with a nocturnal acrophase and a period of 22...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 1998-10, Vol.265 (1408), p.1819-1823 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrical mass response of crayfish photoreceptors (electroretinogram) was recorded continuously for up to seven days in isolated preparations that consisted of the retina and lamina ganglionaris. Electroretinogram amplitude varied in a circadian manner with a nocturnal acrophase and a period of 22-23h in preparations kept in darkness. Acclimatization of animals to reversed light dark cycles resulted in a phase reversal of the rhythm in vitro. The per (period) gene of Drosophila has been implicated in the genesis of rhythms in insects and in vertebrates. Immunocytochemical staining with an antibody against the PER gene product revealed immunoreactivity in the retinal photoreceptors, as well as in cell bodies in the lamina ganglionaris. Labelled axons run distally towards the photoreceptors and proximally to other areas of the lamina. |
---|---|
ISSN: | 0962-8452 1471-2954 |
DOI: | 10.1098/rspb.1998.0507 |