Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint

This paper describes a new approach to reconstruction of the conductivity field in electrical impedance tomography. Our goal is to improve the tradeoff between the quality of the images and the numerical complexity of the reconstruction method. In order to reduce the computational load, we adopt a l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 1997-10, Vol.16 (5), p.562-571
Hauptverfasser: Cohen-Bacrie, C., Goussard, Y., Guardo, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a new approach to reconstruction of the conductivity field in electrical impedance tomography. Our goal is to improve the tradeoff between the quality of the images and the numerical complexity of the reconstruction method. In order to reduce the computational load, we adopt a linearized approximation to the forward problem that describes the relationship between the unknown conductivity and the measurements. In this framework, we focus on finding a proper way to cope with the ill-posed nature of the problem, mainly caused by strong attenuation phenomena; this is done by devising regularization techniques well suited to this particular problem. First, we propose a solution which is based on Tikhonov regularization of the problem. Second, we introduce an original regularized reconstruction method in which the regularization matrix is determined by space-uniformization of the variance of the reconstructed conductivities. Both methods are nonsupervised, i.e., all tuning parameters are automatically determined from the measured data. Tests performed on simulated and real data indicate that Tikhonov regularization provides results similar to those obtained with iterative methods, but with a much smaller amount of computations. Regularization using a variance uniformization constraint yields further improvements, particularly in the central region of the unknown object where attenuation is most severe. We anticipate that the variance uniformization approach could be adapted to iterative methods that preserve the nonlinearity of the forward problem. More generally, it appears as a useful tool for solving other severely ill-posed reconstruction problems such as eddy current tomography.
ISSN:0278-0062
1558-254X
DOI:10.1109/42.640745