Mismatch repair defects and O6-methylguanine-DNA methyltransferase expression in acquired resistance to methylating agents in human cells

Fifteen variants with >/=30-fold resistance to N-methyl-N-nitrosourea were isolated from the Burkitt's lymphoma Raji cell line. Eight had received a single treatment with a highly cytotoxic dose. The remainder, including the previously described RajiF12 cell line, arose following multiple ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1997-11, Vol.272 (45), p.28596
Hauptverfasser: Hampson, R, Humbert, O, Macpherson, P, Aquilina, G, Karran, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fifteen variants with >/=30-fold resistance to N-methyl-N-nitrosourea were isolated from the Burkitt's lymphoma Raji cell line. Eight had received a single treatment with a highly cytotoxic dose. The remainder, including the previously described RajiF12 cell line, arose following multiple exposures to initially moderate but escalating doses. Surprisingly, methylation resistance arose in three clones by reactivation of a previously silent O6-methylguanine-DNA methyltransferase gene. Five clones, including RajiF12, displayed the microsatellite instability and increased spontaneous mutation rates at the hypoxanthine-guanine phosphoribosyltransferase locus, consistent with deficiencies in mismatch repair. Defects in either the hMutSalpha or hMutLalpha mismatch repair complexes were identified in extracts of these resistant clones by in vitro complementation using extracts from colorectal carcinoma cell lines. Defects in hMutLalpha were confirmed by Western blot analysis. Remarkably, five methylation-resistant clones in which mismatch repair defects were demonstrated by biochemical assays did not exhibit significant microsatellite instability.
ISSN:0021-9258