Yaw Sensory Rearrangement Alters Pitch Vestibulo-Ocular Reflex Responses

Ten male subjects underwent two types of adaptation paradigm designed either to enhance or to attenuate the gain of the canal-ocular reflex (COR), before undergoing otolith-ocular reflex (OOR) testing with constant velocity, earth horizontal axis and pitch rotation. The adaptation paradigm paired a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta oto-laryngologica 1997-09, Vol.117 (5), p.647-656
Hauptverfasser: Petropoulos, A. E., Wall, C., Oman, C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ten male subjects underwent two types of adaptation paradigm designed either to enhance or to attenuate the gain of the canal-ocular reflex (COR), before undergoing otolith-ocular reflex (OOR) testing with constant velocity, earth horizontal axis and pitch rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about an earth vertical axis with a 0.2 Hz optokinetic stimulus that was deliberately mismatched in peak velocity or phase and was designed to produce short-term changes in the COR. Preadaptation and postadaptation OOR tests occurred at a constant velocity of 60%sec in the dark and produced a modulation component of the slow phase velocity with a frequency of 0.16 Hz due to otolithic stimulation by the sinusoidally changing gravity vector. Of the seven subjects who showed enhancement of the COR gain, six also showed enhancement of the OOR modulation component. Of the seven subjects who showed attenuation of the COR gain, five also showed attenuation of the OOR modulation component. The probability that these two cross-axis adaptation effects would occur by chance is less than 0.02. This suggests that visual-vestibular conditioning of the yaw axis COR also induced changes in the pitch axis OOR. We thus postulate that the central nervous system pathways that process horizontal canal yaw stimuli have elements in common with those processing otolithic stimuli about the pitch axis.
ISSN:0001-6489
1651-2251
DOI:10.3109/00016489709113455