Physiological melatonin inhibition of human breast cancer cell growth in vitro : Evidence for a glutathione-mediated pathway
Melatonin, the chief hormone secreted by the pineal gland, has been previously shown to inhibit human breast cancer cell growth at the physiological concentration of 1 nM in vitro. In this study, using the estrogen receptor (ER)-positive human breast tumor cell line MCF-7, we have shown that 10 micr...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 1997-05, Vol.57 (10), p.1909-1914 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Melatonin, the chief hormone secreted by the pineal gland, has been previously shown to inhibit human breast cancer cell growth at the physiological concentration of 1 nM in vitro. In this study, using the estrogen receptor (ER)-positive human breast tumor cell line MCF-7, we have shown that 10 microM L-buthionine-[S,R]-sulfoximine (L-BSO), an inhibitor of gamma-glutamylcysteine synthetase (the rate-limiting enzyme in glutathione synthesis), blocks the oncostatic action of 1 nM melatonin over a 5-day incubation, indicating that glutathione is required for melatonin action. The result was repeated with ZR75-1 cells, suggesting that the glutathione requirement is a general phenomenon among ER+ breast cancer cells. Addition of exogenous glutathione (1 microM) to L-BSO-treated groups restored the melatonin response in both cell lines. Further demonstration of the importance of glutathione was shown using the ER- breast tumor cell line HS578T, which is normally unresponsive to melatonin. Growth in this cell line was inhibited in the presence of 1 microM ethacrynic acid (an inhibitor of glutathione S-transferase) plus 1 nM melatonin, and this effect was blocked with 10 microM L-BSO. We also observed a steady decrease of intracellular glutathione in MCF-7 cells over a 5-day incubation, suggesting that these cells metabolize glutathione differently than do normal cells. |
---|---|
ISSN: | 0008-5472 1538-7445 |