Is the beneficial effect of calcium channel blockers against cyclosporine a toxicity related to a restoration of ATP synthesis ?

ATP synthesis inhibited by Cyclosporine A is restored by calcium channel blockers: nifedipine, verapamil, bepridil, diltiazem. ATP synthesis was estimated using liver mitochondria by measuring the rate of respiration during state 3 and a measure of the yield of ATP synthesis, the P/O ratio. The stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical research 1995-04, Vol.12 (4), p.518-522
Hauptverfasser: SALDUCCI, M. D, CHAUVET-MONGES, A. M, DUSSOL, B. M, BERLAND, Y. F, CREVAT, A. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ATP synthesis inhibited by Cyclosporine A is restored by calcium channel blockers: nifedipine, verapamil, bepridil, diltiazem. ATP synthesis was estimated using liver mitochondria by measuring the rate of respiration during state 3 and a measure of the yield of ATP synthesis, the P/O ratio. The study of calcium fluxes through mitochondrial membrane indicates that calcium channel blockers counteract the mitochondrial calcium storage induced by cyclosporine A. If the restoration of ATP synthesis observed in vitro also occurred in vivo, the increase in ATP pool might contribute to a better functioning of the Ca2+ extrusion pumps of the cells, thereby maintaining the cytosolic calcium concentration (Cai), in the normal range. The nephrotoxicity of cyclosporine A appears to be due to a vasoconstrictive effect related to an increased Cai. This result may account for the reduction of clinical cyclosporine A toxicity by calcium channel blockers. Verapamil appears to be the most efficient in restoring ATP synthesis.
ISSN:0724-8741
1573-904X
DOI:10.1023/A:1016293627487