Somatic Cell Cloning in Polyester Stacks
Single somatic cells, including fibroblasts, myelomas, and hybridomas, proliferate normally when trapped between a plastic dish and a disc of polyester cloth. Contact between the overlay and the plastic for 8-16 days results in identical colony patterns on the cloth and the plate. When several cloth...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1982-05, Vol.79 (10), p.3223-3227 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single somatic cells, including fibroblasts, myelomas, and hybridomas, proliferate normally when trapped between a plastic dish and a disc of polyester cloth. Contact between the overlay and the plastic for 8-16 days results in identical colony patterns on the cloth and the plate. When several cloth discs are simultaneously stacked over Chinese hamster ovary cells, three or four high-resolution colony copies can be generated from a single master dish. The colonies on the cloth can be analyzed by radiochemical methods [Esko, J. D. & Raetz, C. R. H. (1978) Proc. Natl. Acad. Sci. USA 75, 1190-1193] or by ``replica plating'' to a new disc. The use of polyester cloth, singly or in stacks, has several major advantages over previous techniques for somatic cell replica plating, including: (i) broad applicability to diverse cell lines such as fragile membrane mutants of Chinese hamster ovary cells and relatively nonadherent myelomas or hybridomas; (ii) the possibility of generating multiple copies of the same colony population, allowing simultaneous analysis for several enzymes or cellular components; and (iii) superior resolution and transfer efficiency in copying colony patterns from one surface to another. The remarkable capacity of animal cell colonies to proliferate upward through ``polyester stacks'' may reflect chemotropic movement of individual cells and opens new approaches to somatic cell genetics. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.79.10.3223 |